Investigation of the Ultra-High-Energy gamma-ray emission from the Northern Fermi Bubble with LHAASO-KM2A

Yi Zhang,a,b,* Jiayin He,a,b,* Rui Zhanga,b and Shiping Zhaoa,c
on behalf of the LHAASO Collaboration

(a complete list of authors can be found at the end of the proceedings)

aKey Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210023 Nanjing, 9 Jiangsu, China
bUniversity of Science and Technology of China, 230026 Hefei, Anhui, China
cInstitute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China

E-mail: zhangyi@pmo.ac.cn, hejy@pmo.ac.cn

We analyze gamma-ray emission from the Northern Fermi bubble region at the ultra-high-energy range, using the data collected by LHAASO-KM2A from December 2019 to September 2022. Employing an improved gamma/hadron separation method, the median energy of the gamma rays is above 25 TeV. We perform the “direct integral method” in the background estimation; however, no significant excess is observed. Consequently, we present the expected upper limits for gamma-ray emissions within the Fermi bubble region at this energy range.
1. Introduction

The Fermi bubbles are two large-scale structures of gamma-ray emission situated above and below the Galactic Center, extending to \(|b| \sim 50^\circ\). They were initially detected in 2010 using data from the Fermi-LAT telescope\([1]\) and have since been commonly referred to as the "Fermi bubbles". These bubbles exhibit a consistent and uniform spectral index of approximately -2 within the 1 GeV to 100 GeV energy range. The morphology of the Fermi bubbles observed in the gamma-ray band has been identified to be consistent with what has been observed in other wavelengths \([2–5]\). The formation of the Fermi bubbles and these associated features in different energy bands might have originated from the same past violated event of the Galactic center\([1, 5]\). Despite discovering the Fermi bubble several years ago, there is ongoing debate regarding their underlying physical mechanisms\([6–11]\). Notably, observations of the Fermi bubbles in the TeV range have not revealed any significant excess, with upper limits established by HAWC between TeV and 100 TeV\([12]\). As a portion of the Northern sky region of the Fermi bubble falls within the field of view of LHAASO, our study utilizes the data gathered by LHAASO-KM2A, which has a high sensitivity to ultra-high-energy gamma rays, to investigate gamma-ray emissions from the Northern Fermi bubble region.

2. LHAASO Experiment

The Large High Altitude Air Shower Observatory (LHAASO) is a hybrid ground-based extensive air shower array located at Haizi Mountain in Daocheng, Sichuan province, China (100.01°E, 29.35°N, 4410 m a.s.l.) \([13]\). LHAASO comprises three sub-arrays: a 1.3 square kilometer array (KM2A), a 78000 m² water Cherenkov detector array (WCDA), and a wide field of view Cherenkov/fluorescence telescopes array (WFCTA). The construction of the entire KM2A was completed in July 2021, and the full array has been operational since July 20, 2021. The KM2A consists of 5195 electromagnetic detectors (EDs) measuring 1 m² each and 1188 muon detectors (MDs) with an area of about 36 m² each. KM2A provides unprecedented sensitivity at energies above a few tens of TeV, enabling the search for very- and ultra-high-energy gamma-ray emissions in the northern sky.

3. Data Analysis

In this study, we utilize the data collected during various running periods, specifically from December 27, 2019, to September 30, 2022. These periods include the following: half array (December 27, 2019, to November 30, 2020), three-quarters array (December 1, 2020, to July 19, 2021), and full array (July 20, 2021, to September 30, 2022). The region of interest (ROI) in our study is determined based on the findings of the Fermi bubbles as reported in the paper by \([1]\). The ROI is restricted to \(|b| > 10^\circ\) and covers a declination range of \(-20^\circ\) to \(4^\circ\), as well as a right ascension range of \(220^\circ\) to \(258^\circ\). The right panel of Figure 1 provides a visual representation of this region. In addition, it is worth mentioning that the point source of PKS 1510-089 is within the ROI. To exclude any influence from this source, we employ a circular mask with a radius approximately 5 times that of the point spread function (PSF).
The Northern Fermi bubble with LHAASO-KM2A

Yi Zhang and Jiayin He

In the Crab-like point source analysis, we apply the muon selection criteria, ensuring a gamma-ray survival fraction of 90\% for energies greater than 100 TeV based on simulations [13]. Given that the Fermi bubble encompasses a substantial solid angle, approximately 0.25 sr, we incorporate additional criteria to effectively reduce the cosmic ray background at higher energies.

The Q factor is defined as the ratio between the survival fraction of gamma rays, ϵ_γ, and the square root of the survival fraction of cosmic ray background, ϵ_{CR}, as shown in

$$Q = \frac{\epsilon_\gamma}{\sqrt{\epsilon_{CR}}} \quad (1)$$

Both fractions are determined after performing a separation between gamma rays and cosmic rays. The parameter utilized for the separation of gamma rays and hadrons [13] is defined as:

$$R = \log \left(\frac{N_\mu + 0.0001}{N_e} \right) \quad (2)$$

where N_μ represents the number of muons and N_e corresponds to the number of electromagnetic particles in a shower induced by either a gamma ray or a hadron. The comparison of Q obtained from two sets of parameters is shown in Figure 2.

The event selection criteria employed in our study are as follows: Firstly, we require that the triggered EDs and the particles deposited for shower reconstruction exceed a minimum count of ten. Secondly, we impose a condition where the reconstructed direction’s zenith angle must be below 50°. Lastly, we restrict the shower age to fall within the range of 0.6 – 2.4. Celestial coordinates bin the data into pixels of size $0.1^\circ \times 0.1^\circ$, while energy bins are logarithmic and equal width $\Delta \log E = 0.4$.

To estimate the background in each pixel, we use the "direct integral method" [14] in this study. This method assumes that the spatial distribution of the collecting efficiency remains stable over a short period in the detector coordinates. We can accurately determine the background by convolving the total event rate with the normalized spatial distribution. We use background data from ± 3 hours to estimate the efficiency of the time bin for the central hour.

To reduce the influence of known sources on the background estimation, we exclude the corresponding areas of the sky during the calculation, as shown in Figure 1. We detect sources using LHAASO-KM2A and consider their fitting position, size, and energy distribution, with a
The Northern Fermi bubble with LHAASO-KM2A

Yi Zhang and Jiayin He

4. Results

By utilizing the "direct integral method," we obtain the counts within the on-source and off-source regions. The significance is determined using the Li-Ma formula. However, no significant excess is detected. Consequently, the upper limits are calculated following the Helene prescription[15]. In our calculations, we assume a power-law spectrum with an index of -2.75 for gamma-ray emissions within the Northern bubble region. Additionally, we assume a uniform flux distribution. The upper limits at the 95% confidence level for each bin are computed, and the results will be presented in the poster. We also employ the equi-zenith angle method for background estimation, yielding consistent results in both significance and upper limits.

In this study, we conduct calculations to determine the expected upper limit for the Fermi Bubble. These calculations were based on the background of KM2A maps, specifically the off-source map. By fluctuating the background events in the off-source maps, we obtained the median value, as well as the 68%, 95%, and 99.7% confidence intervals (CIs). The expected 95% upper limit is represented by the solid-red dashed line in Figure 3, while the color bands represent the 68%, 95%, and 99.7% CIs for the upper limits, denoted as the 1σ, 2σ, and 3σ containment, respectively.

In Figure 3, we present a summary of various observations of the northern Fermi Bubble. Only upper limits on the flux have been provided in the TeV range. It is worth noting that HAWC has recently updated its results based on a template-based search, leading to more stringent constraints compared to its previous findings [16].

The hadronic model, represented by the black line, is based on the work of Lunardini et al. (2015)[18]. This model serves as a gamma-ray counterpart to the neutrino flux model that best fits the data obtained from IceCube. Specifically, IceCube has observed a total of five events that are spatially associated with the Fermi Bubbles. In order to account for the emitted flux from both bubbles, a differential flux model was developed. The resulting upper limits effectively rule out the parent proton spectrum extrapolated from the IceCube data above 100 TeV. The black dashed line
The Northern Fermi bubble with LHAASO-KM2A

Yi Zhang and Jiayin He

5. Conclusion

The study presents a search for gamma rays with energies above 25 TeV in the region of the Northern Fermi Bubble. A total of 342 days of data from the half array, 232 days from the 3/4 array, and 438 days from the full array of LHAASO-KM2A are utilized in this investigation. No statistically significant excess of gamma rays is observed above 25 TeV within the search area, leading to the calculation of 95% confidence level upper limits on the flux. These upper limits, covering gamma-ray energies ranging from 25 TeV to 1 PeV, contradict the hadronic injection spectrum derived from IceCube measurements. However, the current findings do not provide conclusive evidence regarding the hadronic or leptonic origin of the Fermi bubbles.

6. Acknowledgement

We would like to thank all staff members who work at the LHAASO site above 4400 meters above sea level year-round to maintain the detector and keep the water recycling system, electricity power supply, and other components of the experiment operating smoothly. We are grateful to the Chengdu Management Committee of Tianfu New Area for the constant financial support for research with LHAASO data. This research work is also supported by the following grants: The National Key R&D program of China under grants 2018YFA0404201, 2018YFA0404202,
The Northern Fermi bubble with LHAASO-KM2A

Yi Zhang and Jiayin He

2018YFA0404203, and 2018YFA0404204, by the National Natural Science Foundation of China No.12273114, No.12022502, No.12205314, No.12105301, No. 12261160362, No.12105294, No.U1931201, Project for Young Scientists in Basic Research of Chinese Academy of Sciences No. YSBR-061, the Program for Innovative Talents and Entrepreneur in Jiangsu.

References

Full Authors List: LHAASO Collaboration

1 Key Laboratory of Particle Astrophysics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing, China
2 University of Chinese Academy of Sciences, 100049 Beijing, China
3 Tsinghua University, Beijing, China
4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, 2 Dublin, Ireland
5 Max-Planck-Institut fuer Physik, P.O. Box 103980, 80299 Heidelberg, Germany
6 State Key Laboratory of Particle Detection and Electronics, China University of Science and Technology, 2306 Hefei, Anhui, China
7 School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, 610031 Chengdu, Sichuan, China
8 Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, 850000 Lhasa, Tibet, China
9 National Astronomical Observatories, Chinese Academy of Sciences, 100101 Beijing, China
10 School of Physics and Astronomy (Zhuha), Sun Yat-sen University, 519000 Zhuhai & 510275 Guangzhou, Guangdong, China
11 School of Physics and Astronomy, Yunnan University, 650091 Kunming, Yunnan, China
12 Departement de Physique Nuclaire et Corpusculaire, Faculte de Sciences, Universite de Geneve, 24 Quai Ernest Ansermet, 1211 Geneva, Switzerland
13 Institute of Frontier and Interdisciplinary Science, Shandong University, 266237 Qingdao, Shandong, China
14 APC, Universite de Paris Citeu, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, 119 75205 Paris, France
15 Department of Engineering Physics, Tsinghua University, 100084 Beijing, China
16 School of Physics and Microelectronics, Zhengzhou University, 450001 Zhengzhou, Henan, China
17 Yunnan Observatories, Chinese Academy of Sciences, 650261 Kunming, Yunnan, China
18 The Northern Fermi bubble with LHAASO-KM2A

Yi Zhang and Jiayin He
The Northern Fermi bubble with LHAASO-KM2A

Yi Zhang and Jiayin He

25 College of Physics, Sichuan University, 610065 Chengdu, Sichuan, China
26 Institute for Nuclear Research of Russian Academy of Sciences, 117312 Moscow, Russia
27 Moscow Institute of Physics and Technology, 141700 Moscow, Russia
28 School of Physics, Peking University, 100871 Beijing, China
29 School of Physical Science and Technology, Guangxi University, 530004 Nanning, Guangxi, China
30 Department of Physics, Faculty of Science, Mahidol University, 10400 Bangkok, Thailand
31 Center for Relativistic Astrophysics and High Energy Physics, School of Physics and Materials Science & Institute of Space Science and Technology, Nanchang University, 330031 Nanchang, Jiangxi, China
32 National Space Science Center, Chinese Academy of Sciences, 100190 Beijing, China