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Bayesian inference of 3D densities of galactic HI and H2
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Due to our vantage point in the disk of the Galaxy, its 3D structure is not directly accessible.
However, knowing the spatial distribution, e.g. of atomic and molecular hydrogen gas is of great
importance for interpreting and modelling cosmic ray data and diffuse emission. Using novel
Bayesian inference techniques, we reconstruct the 3D densities of atomic and molecular hydrogen
in the Galaxy together with (part of) the galactic velocity field. In order to regularise the infinite
number of degrees of freedom and obtain information in regions with missing or insufficient
data, we incorporate the correlation structure of the gas fields into our prior. Basis for these
reconstructions are the data-sets from the HI4PI-survey on the 21-cm emission line and the CO-
survey compilation by Dame et al. (2001) on the (1 → 0) rotational transition together with a
variable gas flow model. We present the preliminary estimated mean surface mass densities and
corrections to the prior assumption of the galactic velocity field. In the future, we plan to relax
assumptions on the optical thickness and include additional data to further constrain either the
galactic velocity field or the gas densities.
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1. Introduction

In order to properly interpret measurements of cosmic rays and gamma-ray diffuse emission, it
is necessary to understand the emission, propagation and absorption of radiation in the interstellar
medium of the Milky Way. This medium is a complex system consisting mainly of gas, magnetic
fields, interstellar radiation fields and cosmic rays which permeate the entire Galaxy. While it makes
up for only a few percent of the total mass of the Galaxy (the majority is in the form of stars or dark
matter), it fills out most of the available volume and thereby defines the dynamics of radiation and
particles within.

Due to our vantage point, the 3D-distribution of the constituents of the Galaxy is not easily
determined by observations of the sky. No matter in which direction we point our telescopes, we
always observe an integrated signal of radiation that has travelled an a priori unknown distance
through the Galaxy. However, due to galactic rotation and peculiar motion, light that reaches us
will be Doppler-shifted by a certain amount, depending on the relative velocity of its source with
respect to us. This is particularly useful when looking at emission lines that have a narrow width
as it enables us to determine the relative velocity of its emitter and observer very precisely. This
idea is unfortunately somewhat tainted by the fact that we do not know the precise structure of the
galactic velocity field - and even circular rotation features a velocity ambiguity for positions within
the solar circle. Any attempt to produce 3D maps of some quantity from such data will thus have to
specify some rule according to which said quantity is placed when there is an ambiguity. Multiple
approaches have been tried, most of them treating every line-of-sight (direction) independently,
thereby missing out on a lot of information. This work will attempt to produce 3D maps of the
distribution of HI (atomic hydrogen) and H2 (molecular hydrogen) in the Milky Way using novel
Bayesian inference techniques, exploiting spatial correlations of the gas structure to regularise
ambiguities. Our approach will not only yield maps of the estimated gas densities, but also
uncertainty information.

The two observational datasets used are that of the HI4PI-survey [1] mapping the 21-cm
emission of atomic hydrogen in the galaxy (see figure 1) and the CO-survey compilation by [2]
observing the 1 → 0 rotational transition of CO as a tracer for molecular clouds and thereby H2

(see figure 2).
This work builds on precursory reconstructions (see [3, 4]) with some key differences:

1. A different numerical grid is used trading resolution far away from the observer for a much
more refined resolution nearby.

2. The inference of galactic HI and H2 is unified into a common inference process coupled by a
common galactic velocity field.

3. The galactic velocity field is partly inferred, modifying our prior assumption by adding a
curl-free field.

In the following section, we will formulate this problem in a Bayesian manner and shortly describe
the used approach to this very-high-dimensional problem. Thereafter, we will show our preliminary
results, i.e. 3D-maps of the distribution of HI and H2 in the galaxy.
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2. Method

2.1 Bayesian formulation

In the language of probabilities, we want to know the probability of the gas distribution in the
galaxy (called signal 𝑠) given the data 𝑑 obtained by the sky surveys. Using Bayes’ law, this can be
written as

𝑃(𝑠 |𝑑) = 𝑃(𝑠, 𝑑)
𝑃(𝑑) =

𝑃(𝑑 |𝑠)𝑃(𝑠)
𝑃(𝑑) . (1)

Since the datasets we are using measured the brightness temperature 𝑇 (a measure of the intensity
of the observed radiation) as a function of relative line-of-sight velocity and position on the sky,
we will attempt to infer the CO and HI volume emissivity 𝑠 = (𝜀HI(®𝑥), 𝜀CO(®𝑥)) simultaneously and
later convert to gas densities.

Equation 1 is often solved by creating a model that allows to sample from the prior distribution
and compute the likelihood of said sample. Then, algorithms like MCMC sampling can be used
to probe the shape of the posterior probability. For problems with many free parameters (usually
more than ≳102), this becomes computationally unfeasible. A commonly used approach for high-
dimensional problems are so-called Variational Inference(VI)-methods [5]. The idea of these
methods is to approximate the posterior by a family of parametric distributions, for example a
multi-variate Gaussian distribution.

The parameters of this approximation can be determined by minimising the ”distance” between
the approximated posterior and the true posterior, for example via the Kullback-Leibler-divergence
[6]. Computing this in theory involves the inversion of the full covariance matrix of all the correlated
latent variables which - with millions or more of free parameters - is impossible even to store in
common memory modules. As an approximation, it has been suggested to replace the inverse of
the full covariance matrix by the inverse Fisher information metric, an approach known as Metric
Gaussian Variational Inference (MGVI, [7]). This method can be applied to problems with more
than 106 parameters while still being computationally efficient on regularly available hardware.

This algorithm is implemented in an iterative scheme in the publicly available code-package
nifty81. It alternates between estimating the covariance of the probability distribution with the
inverse Fisher information metric at the current mean and optimising the mean of the distribution
by minimising the Kullback-Leibler divergence to the true posterior with respect to the mean. This
does not require explicitly computing the covariance matrix at any point (which would require the
inversion of the Fisher information metric): instead the Kullback-Leibler divergence is estimated
stochastically by drawing samples from a Gaussian with the appropriate covariance, leading to linear
scaling in the model parameters. This can be implemented in terms of implicit operators which
apply the Fisher information metric to some vector and then solving a linear system via conjugate
gradient methods to obtain the application of the inverse Fisher information metric to some vector
(which then features the desired correlation structure).

This way, a set of samples of the posterior distribution is obtained from which the Kullback-
Leibler divergence can be calculated and, in turn, minimised. The algorithm has converged once
the estimate for the mean and the estimate for the covariance are self-consistent. The result of this

1Available at https://gitlab.mpcdf.mpg.de/ift/NIFTy
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Figure 1: HI column density map from the 21cm-
data by the HI4PI collaboration [1]

Figure 2: H2 column density map from the CO-
emission-data compiled by Dame et al. [2]

algorithm is a set of samples of the approximated posterior distribution, implicitly containing the
correlation structure between all model parameters. To apply this algorithm, we thus need

1. A model that allows drawing prior samples from a set of latent variables, taking into account
the spatial correlation structure of the 3D gas distribution (the signal)

2. A connection between the drawn gas realisation and the expected measurement data (the
response)

2.2 Gas model and Signal

Since the data from sky surveys has some fixed angular resolution, it is wise to represent the
gas density on a grid that shares this property. If we chose to represent the gas density on a regular
x-y-z grid (as in [3, 4]), voxels nearby would occupy almost half of the sky while voxels far away
occupy an area on the sky much smaller than the available data resolution. In order to be consistent
with the data resolution we thus choose to represent our signal data on a HEALPix-grid on angular
direction and a logarithmic grid in radial direction. This ensures a high resolution nearby where
we expect to be the most sensitive to the actual gas distribution. This choice will also make the
response-function trivial as the otherwise costly line-of-sight integration reduces to a simple sum
along the radial direction of the grid.

To model our prior, we generate samples of correlated lognormal random fields. These are
obtained by drawing an – initially white-noise – sample 𝜉 (®𝑥) of latent variables and correlating it
using a method called Iterative Charted Refinement [8] according to a Matérn-covariance function.
We infer the parameters of this correlation structure at the same time as the gas density. The result is
a correlated Gaussian random field 𝑔(®𝑥). Upon exponentiation, we obtain a lognormal correlation
structure. This ensures positive gas densities while also allowing for large density differences as
are expected to be present in the interstellar medium. This is not yet a very good prior assumption
for gas in the galaxy as most of the gas is tightly constrained to the galactic disk which has a
small scale height (≈150 pc) compared to its diameter (≈15 kpc). This can be immediately seen
in the data-sets (figures 1 and 2): most of the gaseous emission is concentrated around latitude
zero. The fidelity of the reconstruction can be increased by explicitly modelling the inhomogeneous
large-scale variations. We therefore multiply the correlated field with a profile in z-direction and in
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radial direction:

𝑃𝑧 (®𝑥) = 𝑃𝑧 (𝑧) = exp
(
−|𝑧 |
𝑧ℎ

)
, (2)

𝑃rad(®𝑥) = 𝑃rad(𝑟gal) = exp
(
𝑅cutoff − 𝑟gal

𝑅scale

)
, for 𝑟gal > 𝑅cutoff, else 1 . (3)

Using this, we obtain
𝜖 (®𝑥) = 𝐴 · 𝑃𝑧 (®𝑥) · 𝑃rad(®𝑥) · exp (𝑔(®𝑥)) (4)

for HI and H2 respectively. For the HI-profile, we choose 𝑧ℎ = 𝑧ℎ (𝑟gal) = 150 pc · exp
(
𝑟gal−𝑅⊙
9.8 kpc

)
for 𝑟gal > 5 kpc, 𝑅scale = 3.15 kpc and 𝑅cutoff = 7.0 kpc as suggested by [9]. For the H2-profile, we
use 𝑧ℎ = 50 pc, 𝑅scale = 1.0 kpc and 𝑅cutoff = 8.0 kpc. This does not prevent the inference from
reconstructing fields that differ from this profile, but ensures that the drawn prior samples feature a
galactic-disk-like gas distribution.

2.3 Data and Response

The second ingredient is the response function that connects the signal to the observation
by modelling the generation of synthetic data from a signal sample. For simplicity, we work in
the optically thin limit and ignore any absorption effects. In this case, the measured brightness
temperature 𝑇 (𝑛̂, 𝑣) in some direction 𝑛̂ Doppler-shifted by a velocity difference 𝑣 is related to the
volume emissivity 𝜖 (®𝑥) by a linear response map 𝑅 via

𝑇 (𝑛̂, 𝑣) = 𝑅(𝜖 (®𝑥)) =
∫ ∞

0
d𝑟𝜖 (®𝑥)𝛿(𝑣 − 𝑣LSR(®𝑥)) , (5)

where 𝑣LSR(®𝑥) is the relative line-of-sight velocity at the position (®𝑥) in the local standard of rest
as dictated by our velocity model and 𝑟 = | ®𝑥 | is the distance from Earth. We approximate the
Dirac-delta by a Gaussian with a width of 𝜎HI = 10km

𝑠
[10] and 𝜎H2 = 5km

𝑠
[11] in order to account

for velocity dispersion inside gas clouds.
For the velocity model, we use a fixed component based on a smoothed particle hydrodynamics

simulation by [12], extended beyond 8 kpc using a flat rotation curve. On top of this velocity field,
we add another component computed as the gradient of a scalar velocity potential:

𝑣LSR(®𝑥) = ®𝑣0(®𝑥) + ∇𝑆(®𝑥) . (6)

This scalar field will be modelled as a correlated Gaussian random field and reconstructed at the
same time as the gas emissivities . This opens the possibility for the model to adjust the velocity-field
during the reconstruction. Additionally, we can hope to learn something about the true velocity
field in areas, where the data is very constraining. However, there is no direct velocity-information
in the data if one does not demand that the resulting gas densities should follow a certain correlation
structure. Even then, this introduces many ambiguities as it greatly expands the possibilities, where
gas clouds can be mapped. In the future, we will have to add additional data to either constrain the
gas densities tighter (e.g. using correlations with dust [13]), thereby learning about the velocities
or constrain the velocities tighter (e.g. using parallax information of masers or young stars [14]),
thereby learning about the gas densities.
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Figure 3: Results of the inference with zoom-in on the local neighbourhood. Left panel: HI surface mass
density. Middle panel: H2 surface mass density. Right panel: Line-of-sight velocity at zero latitude

2.4 Noise and Likelihood

Taking into account additive noise in the observations, we alter our model for the relation
between brightness temperature and volume emissivity to

𝑇 (𝑛̂, 𝑣) = 𝑅(𝜖 (®𝑥)) + 𝑛 , (7)

where we assume the noise 𝑛 to be normal distributed and uncorrelated (white) with some diagonal
covariance 𝑁 . The likelihood can then be written as

𝑝(𝑇 |𝜖) =
∫

d𝑛 𝑝(𝑇 |𝜖, 𝑛)𝑝(𝑛) =
∫

d𝑛 𝛿(𝑇 − 𝑅(𝜖) − 𝑛)G(𝑛, 𝑁) = G(𝑇 − 𝑅(𝜖), 𝑁) . (8)

3. Results

We run our reconstruction with a resolution of NSIDE = 32 in angular direction and 500
radial pixels between 𝑟min = 50 pc and 𝑟max = 28 kpc. The sample-average surface mass densities
resulting from the 3D-maps can be seen in figure 3 for HI and H2. This figure also shows the (partly
reconstructed) sample-average line-of-sight velocity in a zero-latitude slice. The reconstructed gas
densities show disk-like structures of gas clusters with imprints of galactic arms that are particularly
visible in the HI-gas reconstruction. Both gas reconstructions suffer from a set of problems that we
will discuss in the following.

3.1 Inferred HI gas density

The outside of the solar circle is well populated with HI-gas, whereas in the inside of the solar
circle, the distance ambiguity seems to be resolved very one-sidedly towards the nearer solution.
This could be due to the logradial grid giving the algorithm the opportunity to place gas nearby
with a much higher fidelity than far away. This can then reproduce the data with a much higher
fidelity as well leading to a much higher likelihood. This could be tested and perhaps solved by
e.g. modifying the grid to have a uniform resolution inside the solar circle or by increasing the
total resolution until saturation. The nearby gas shows a circular structure at the same radius as the
reconstructed velocity as well as a tilted line-like structure in negative 𝑥-direction.

6



P
o
S
(
I
C
R
C
2
0
2
3
)
6
5
8

Bayesian inference of 3D densities of galactic HI and H2 Laurin Söding

3.2 Inferred H2 gas density

The quality of reconstruction of H2 appears to be worse than that of HI, mainly due to the fact
that the gas is very concentrated at the plane 𝑧 = 0 and the amount of grid-points that are far away
and very close to the galactic plane become very few. One can clearly see circular structures in the
gas projection stemming from the (too) low angular resolution. Clearly visible is a bar-like structure
in the galactic centre as well as two ”wall”-like structures in-between us and the galactic centre also
seen in precious reconstructions on a regular grid [3]. The excellent local resolution lets us see fine
structures in the nearby gas showing a similar structure as the HI-gas in negative 𝑥-direction and
small nearby clouds of gas towards the galactic centre.

3.3 Inferred velocity field

The reconstructed curl-free modification of the velocity prior is in general very small in
amplitude and negligible for distances larger than 1 kpc. For distances smaller than that, there is
an almost circular, positive (amplitude up to 10 km

𝑠
) velocity correction being reconstructed. The

position and amplitude coincide nicely with estimates for the expansion velocity of the local bubble
[15]. It is not clear, how much information about the velocity field itself is contained in the data but
the combination of two data-sets having to respect the local correlation structure at the same time
appears to provide at least some information.

4. Conclusion

We present new preliminary 3D-maps of galactic HI and H2 inferred in conjunction using
the same velocity field. We also present a partly reconstructed 3D line-of-sight velocity map
featuring a circular structure with outwards-pointing velocities in the local neighbourhood. The
ingredients for our inference were the HI4PI-survey from [1] measuring 21cm-emission, the CO-
survey compilation by [2] measuring rotational CO-transitions and a VI-algorithm capable of
inferring millions of parameters [7]. We have assumed the optically thin limit. In the future we plan
to improve upon these shortcoming by including additional data and thereby further constraining
either the velocity field or the gas distributions, by lifting our assumption on the optical thinness of
the gas; and by improving the angular resolution of our reconstructions.
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