PoS - Proceedings of Science
Volume 444 - 38th International Cosmic Ray Conference (ICRC2023) - Gamma-ray Astronomy (GA)
Study on the gain and photon detection efficiency drops of silicon photomultipliers under bright background conditions
A. Okumura*, K. Wakazono, K. Furuta and H. Tajima
Full text: pdf
Pre-published on: August 17, 2023
Published on:
The use of silicon photomultipliers (SiPMs) in imaging atmospheric Cherenkov telescopes is expected to extend the observation times of very-high-energy gamma-ray sources, particularly within the highest energy domain of 50–300 TeV, where the Cherenkov signal from celestial gamma rays is adequate even under bright moonlight background conditions. Unlike conventional photomultiplier tubes, SiPMs do not exhibit quantum efficiency or gain degradation, which can be observed after long exposures to bright illumination. However, under bright conditions, the photon detection efficiency of a SiPM can be undergo temporary degradation because a fraction of its avalanche photodiode cells can saturate owing to photons from the night-sky background (NSB). In addition, the large current generated by the high NSB rate can increase the temperature of the silicon substrate, resulting in shifts in the SiPM breakdown voltages and consequent gain changes. Moreover, this large current changes the effective bias voltage because it causes a voltage drop across the protection resistor of 100–1000 Ω. Hence, these three factors, namely the avalanche photodiode (APD) saturation, Si temperature, and voltage drop must be carefully compensated for and/or considered in the energy calibration of Cherenkov telescopes with SiPM cameras. In this study, we measured the signal output charge of a SiPM and its variation as a function of different NSB-like background conditions up to 1 GHz/pixel. The results verify that the product of the SiPM gain and photon detection efficiency is well characterized by these three factors.
DOI: https://doi.org/10.22323/1.444.0674
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.