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The effective mirror area of an imaging atmospheric Cherenkov telescope is a crucial key parameter
for trigger threshold determination and energy calibration. It is usually calculated by 3D ray-tracing
simulation using a simplified telescope model, and the result is used in Monte Carlo simulations.
However, simplified telescope and camera models are not adequate for the Schwarzschild–Couder
configuration to be used in Small-Sized Telescopes (SSTs) of the Cherenkov Telescope Array.
This is because the complex 3D structure of the secondary mirror, telescope masts, and camera
body block a significant fraction of Cherenkov and night-sky photons. To evaluate the effective
mirror area of an SST and to finalize its camera body design with minimal shadowing, a complex
3D model was built and simulated using the ROBAST ray-tracing library. A camera body size
of 570 mm and a window size of 430 mm were selected for the final camera design based on
the evaluation of shadowing by simulation. A non-axisymmetric effective area distribution was
determined via the modeling of the complex telescope structure, while meeting the SST effective
area requirement.
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1. Introduction

The effective mirror area of gamma-ray and cosmic-ray telescopes is a key parameter used in
Monte Carlo (MC) simulations, in which the photon tracks of atmospheric Cherenkov or fluores-
cence radiation are traced. In addition to understanding the optical properties of the atmosphere
and focal-pane photodetectors, an accurate evaluation of the effective mirror area can improve the
energy calibration and MC performance studies of the telescopes.

The optical systems conventionally used for gamma-ray and cosmic-ray observations are
parabolic and Davies–Cotton (DC) systems. The evaluation of the effective area of these sys-
tems is not technically difficult or complex because they are (segmented) single-mirror telescopes.
In these systems, the specular reflection of photons occurs only once on the mirror surface. There-
fore the obscuration by the telescope structure (“shadowing”) is considered only before the reflection
in most cases.

In addition to the conventional telescope designs, the Schwarzschild–Couder (SC) configuration
has been proposed for future imaging atmospheric Cherenkov telescopes (IACTs) [1], which have
aspherical primary and secondary mirrors. This configuration enables us to simultaneously realize
a wide field of view (FOV) and high angular resolution using a compact small-plate-scale camera.
However, calculating the effective area of an SC system is complex because the telescope masts
supporting the secondary mirror and camera are located between the primary and secondary mirrors.
Therefore, incident photons may be obscured by the masts before being reflected by the primary
mirror and again before being reflected by the secondary mirror. In addition, the camera may block
photons if its body diameter is excessively large. Therefore, non-sequential ray-tracing simulation
and accurate three-dimensional (3D) modeling of the telescope and camera structure are required to
evaluate the effective mirror area, which has been approximated in previous simplified simulations.

The use of the SC configuration in IACTs has been realized in prototype telescopes of the
Cherenkov Telescope Array (CTA) [2, 3]. CTA is the next-generation ground-based gamma-ray
observatory that will be comprised of different telescope designs: Large-Sized Telescopes (LSTs,
segmented 23 m parabola), Medium-Sized Telescopes (MSTs, 12 m DC and 10 m SC), and Small-
Sized Telescopes (SSTs, 4 m SC). Among the four different telescope designs of CTA, this paper
focuses on the effective mirror area evaluation of the SC optical system of the SSTs.

To meet the CTA requirement for the minimum effective area of the SSTs and to finalize the
camera body design, we first calculate the effective mirror area as a function of different camera
body sizes in Section 2. In Section 3, we calculate the effective area with the final camera design,
including its various components that can potentially block photon tracks between the primary and
secondary mirrors. The nonuniformity of the effective area in the camera FOV is discussed as well.

2. SST Camera Design

CTA SST requirements include a camera FOV radius larger than 4◦ (namely 8◦ diameter) and
an effective mirror area larger than 5 m2 over the FOV, without considering the losses caused by
photodetector gaps and camera window transmittance. To meet these requirements, not only the
telescope structure but also the camera body size must be carefully designed to prevent significant
effective area losses from shadowing.

2



P
o
S
(
I
C
R
C
2
0
2
3
)
6
7
5

Effective Mirror Area of CTA SST Akira Okumura

Figure 1: 3D CAD mechanical model of the SST camera (2021 version). The octagonal camera window
of diameter 430 mm protects the SiPM array aligned on the focal plane. The figure is reproduced from [4]
under the Creative Commons License (CC BY-NC-ND 4.0).

As shown in Fig. 1 and Fig. 2(a), the SST camera will have silicon photomultiplier (SiPM)
tiles on the spherical focal plane to cover the > 8◦ FOV with 2048 pixels. They are connected to
the front-end and back-end electronics and covered by a UV-transparent flat window. If the camera
doors and/or camera body enclosing the electronics are excessively large, they might interfere with
the photon tracks between the primary and the secondary mirrors. However, if a small window
diameter is selected to reduce the window production cost and to minimize the interference, the
window edge may block the incident photons at the SiPM edges, because the angles of incidence
distribute from ∼30◦ to ∼60◦. Therefore, the camera body must be sufficiently small, whereas the
camera window must be sufficiently large simultaneously to consider both shadowing causes.

First, we evaluated the impact of the window diameter on shadowing by simulating the SST
optical system with different window diameters. The telescope structure shown in Fig. 2(a) was
fully simulated; however, the camera body structure was simplified by including only a simple
camera box and an octagonal window frame. The ROBAST ray-tracing library [5, 6] was used in
the simulations to model the 3D structures and to trace the photon tracks. One hundred thousand
parallel photons, randomly distributed in a 2.5 m radius circle, were fallen onto the primary mirror,
and the number of photons reaching the focal plane was counted to calculate the effective mirror
area. This simulation was repeated for polar angles within the range 0.00–5.50◦ (0.05◦ step) and
different azimuthal angles, as shown in Fig. 3(a). The diameter of the camera in the simulation was
scanned from 360 to 450 mm with a step of 10 mm.

As shown in Fig. 3(a), the 450 mm camera window exhibited a smooth and moderate degra-
dation of the effective area at large off-axis angles; however, the 360 mm window showed a steep
drop within the SiPM tile coverage. Fig. 3(b) shows the comparison of the changes in effective
area slices along two FOV directions. Although all camera window sizes calculated in this study
meet the SST requirements (>4◦ FOV radius and >5 m2 effective area), a large nonuniformity of
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(a) (b)

Figure 2: (a) Detailed 3D model of an SST used in full ROBAST simulations. (b) Simplified 3D model of
an SST assumed in sim_telarray.
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Figure 3: (a) Distribution of the calculated effective mirror based on different camera FOV coordinates.
Two window diameters are compared: 450 mm (left) and 360 mm (right). Four of the SiPM tile positions
are represented using squares. (b) Calculated effective areas as a function of the field angle. Two slices,
the center to a SiPM edge and the center to a SiPM corner, are depicted by the black and red curves (see
also black and red arrows in (a)). Calculations with different window diameters (360–450 mm in 10 mm
steps) are displayed concurrently. The curves for the 430 mm window are highlighted with thick lines. The
difference between the black and red curves in 0◦–3.5◦ is because of the asymmetric telescope masts and
primary mirror.
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B3 (490 mm Frame, 510 mm Enclosure)

B4 (475 mm Frame, 510 mm Enclosure)

B5 (490 mm Frame, 570 mm Enclosure, w/o Doors)

B6 (490 mm Frame, 570 mm Enclosure, w/o Doors or Motors)

Figure 4: (a) Wireframe view of an SST camera design with basic dimensional parameters that are important
for shadowing calculations. (b) Comparison of the effective areas of different camera dimension designs.

the effective area over the SiPM tiles is undesirable for triggering and image analysis. Therefore,
a diameter of 430 mm was selected for the camera window in our final camera design to ensure a
uniform effective area.

After determining the diameter of the camera window, we evaluated the effect of the camera
enclosure and window frame diameters. Increasing these parameters enables us to flexibly and
easily design the internal structure and cooling system of the camera; however, an excessively large
camera design may block photons passing from the primary mirror to the secondary mirror.

Fig. 4(a) shows a side view of one of the 3D camera models to be simulated. The effective
mirror area was calculated using the same method, but with different camera enclosure and window
frame sizes. Fig. 4(b) compares the simulation results of seven configurations, B0–B6, including
two unrealistic options, i.e., B5 and B6, without doors or motors.

The comparison of B0–B4 indicates that cameras with smaller enclosures exhibit a larger
effective area as expected. However, the difference between B0 (600 mm) and B3 (510 mm) is only
∼0.1 m2 at a field angle of 4◦. Therefore, the gain from a smaller camera design is only a few
percents or less. This does not help improve the SST performance in energy bands below 1 TeV.
Therefore, from an engineering perspective, a enclosure size of 570 mm was selected for the final
camera design. A 490 mm frame size (a 430 nm window) was also selected because it slightly
increases the effective area at around 5◦ compared to a 475 nm frame (a 415 nm window).

3. Final Design

As of July 2023, the SST camera design is being finalized for SST mass production [7]. The
current design is based on the shadowing evaluation discussed in Section 2; the design includes a
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Figure 5: (Left) Distribution of the effective mirror area calculated for individual coordinates on the focal
plane. Simplified 3D models of the SST telescope and camera are assumed for Prod5. (Right) Same as
left, but accurate 3D models are assumed for Prod6. Four SiPM tile positions at the camera edges are
approximately indicated by the squares.

430 mm window diameter and a 570 mm enclosure size.
In the Cherenkov ray-tracing part of sim_telarray, the common MC package used in CTA [8],

assumes a simple telescope and camera models as shown in Fig. 2(b). This is because a non-
sequential ray-tracing simulation of complex telescope geometries requires significant computing
power and a sequential simulation with simplified models must be employed. Instead, sim_telarray
has a configuration parameter (function of the angles of incidence) called telescope_transmission
that scales the effective mirror area to account for shadowing by the complex geometries.

Prior to the final camera design phase, a rather simplified telescope and camera models were
assumed in the calculation of the telescope_transmission function. The shadowing by the structure
of the minor telescope components and the camera was ignored or underestimated in the previous
large MC production in CTA (“Prod5”). Hence, we had to re-evaluate telescope_transmission for
the latest MC production (“Prod6”) to more accurately predict the CTA performance.

Fig. 5 compares the ROBAST simulations for the simplified Prod5 model and a full 3D model
for Prod6. The former is axisymmetric about the optical axis (i.e., FOV center); however, the latter
is asymmetric because of the full 3D implementation of the telescope masts and camera window.
The nonuniformity is more visible in Fig. 6, where Fig. 5 is sliced in several directions. Owing to
the nonuniformity in the full ROBAST simulation, the relative difference of the effective mirror area
reaches approximately 10% around 2◦. Hence, the energy reconstruction of a single gamma-ray
event is dependent on the direction on the camera, and the energy resolution can degrade if the
nonuniformity is not considered in image analysis.

In the current implementation of sim_telarray, the telescope_transmission function cannot be
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Figure 6: Comparison of the effective areas assumed in Prod5 and Prod6. The former is axisymmetric,
whereas the latter is asymmetric. Thus, several azimuthal directions exhibit small (∼0.1 mm2) variations in
Prod6.

asymmetric. Instead, Prod6 uses a symmetric telescope_transmission averaged over azimuthal
angles. Fig. 7 compares the telescope_transmission used in Prod5 and Prod6. The latter was
calculated by comparing the simplified sim_telarray simulation and full ROBAST simulation in
this study. In the future version of sim_telarray, asymmetric telescope_transmission must be
implemented to minimize the difference between MC simulations and real data.

4. Conclusion

We calculated the effective mirror area of the CTA SSTs using the ROBAST ray-tracing library
and a full 3D model of the telescope and camera structure. A simulation was performed in the
camera design phase to finalize a few important parameters of the camera body size. After the
finalization, another simulation was performed to calculate the telescope_transmission parameter
in sim_telarray for the CTA MC production Prod6. This study revealed an asymmetric effective
area over the camera FOV, which must be considered in the Cherenkov image analysis for future
gamma-ray observations.
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