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1. Introduction

Cascade-shower electrons show excess distribution of path-length due to the multiple Coulomb
scattering with the matters of traverse, which is observed as the arrival-time-distribution of shower
electrons in the air shower experiment. The distributions can be obtained from our Mellin transform
of 〈uκ〉, derived by solving the diffusion equation for the process [1].

Plain descriptions for the formulae〈uκ〉 under Approximation B are proposed, and the mean
excess and the excess distribution of path-length averaged over shower electrons derived from our
〈uκ〉 are indicated. The results are compared with those derived by a Monte Carlo (abbreviated by
MC, hereafter) calculation [2]. The threshold-energyE dependence of the results, appearing in the
MC results, are also discussed.

2. The meank-th moment of the excess-path-length distribution for shower
electrons

Let π(E,~θ ,∆, t)dEd~θd∆ andγ(E,~θ ,∆, t)dEd~θd∆ be the numbers of electron and photon of
energyE, direction~θ and excess-path-length∆ within the infinitesimal ranges ofdE, d~θ andd∆,
at the traversed thickness oft in the unit of radiation length [3, 4]. Under the cascade process,
π(E,~θ ,∆, t) andγ(E,~θ ,∆, t) satisfy the diffusion equation of

∂
∂ t

(
π(E,θ ,∆, t)
γ(E,θ ,∆, t)

)
=

(
−A′ B′

C ′ −σ0

)(
π
γ

)
− θ 2

2
∂

∂∆

(
π
γ

)
+

E2
s

4E2 ∇2
θ

(
π
0

)
+

ε∂
∂E

(
π
0

)
, (2.1)

where shower electrons lose their energies ofεdt in each traverse ofdt by ionization with the
critical energiesε of 0 (Approximation A) or finite values (Approximation B). The operatorsA′,
B′, C ′ and the constantsσ0, ε are indicated in Nishimura [4]. Note that the variable~θ in the
densities are expressed byθ asπ(E,θ ,∆, t) andγ(E,θ ,∆, t), as they are axially symmetric with~θ .

We have thek-th moment of excess-path-length distribution for total shower electrons (withE
from 0 to∞) from the diffusion equation under Approximation B [1], as

Π(k)
B (E0,0, t) =

∫ ∞

0
dE

∫ ∞

0
2πθdθJ0(ζθ)

∫ ∞

0
∆kπ(E,θ ,∆, t)d∆

' (E2
s/2ε2)k

2π i

∫
ds
s

(
E0

ε

)s

eλ1(s)t s
s+2k

{Dsφ
(k)
0 (s;λ )}λ→λ1(s)

λ1(s)−λ2(s)

{
K(k)

0 (s,−s−2k)
}

λ→λ1(s)
.

(2.2)

Especially fork = 0, we have the total number of shower electrons

ΠB(E0,0, t) ' 1
2π i

∫
ds
s

(
E0

ε

)s

eλ1(s)t
{Dsφ00(s;λ )}λ→λ1(s)

λ1(s)−λ2(s)

{
K(0)

0 (s,−s)
}

λ→λ1(s)

' ΠA(E0,ε, t){K(0)
0 (s̄,−s̄)}λ→λ1(s̄) with (2.3)

ln
E0

ε
= −λ ′1(s̄)t +

1
s̄
, (2.4)

indicated in the reviews of Rossi and Greisen, and Nishimura [3, 4], whereΠA(E0,ε, t) denotes the
number of shower electrons under Approximation A ands̄ is called as the shower age. Thus we
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Figure 1: Mean excess〈u〉
of path-length under Approxi-
mation A for shower electrons,
with the threshold energy ofE
andu≡ 2E2∆/E2

s [1].
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Figure 2: Root-Mean-Square ex-
cess

√
〈u2〉−〈u〉2 of path-length

under Approximation A for shower
electrons, with the threshold energy
of E andu≡ 2E2∆/E2

s [1].
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Figure 3: Mean excess〈u〉
of path-length under approxima-
tion B for shower electrons, with
the threshold energyE of 0 and
u≡ 2ε2∆/E2

s .

have the meank-th moment of excess-path-length averaged over the total shower electrons, as

〈∆k〉 =
Π(k)

B (E0,0, t)
ΠB(E0,0, t)

'
(

E2
s

2ε2

)k
s̄

s̄+2k

{
φ (k)

0 (s̄;λ )
φ00(s̄;λ ))

K(k)
0 (s̄,−s̄−2k)

K(0)
0 (s̄,−s̄)

}

λ→λ1(s̄)

or (2.5)

〈uk〉 ≡
〈{

2ε2∆
E2

s

}k
〉
' s̄

s̄+2k

{
φ (k)

0 (s̄;λ )
φ00(s̄;λ ))

K(k)
0 (s̄,−s̄−2k)

K(0)
0 (s̄,−s̄)

}

λ→λ1(s̄)

, (2.6)

where we introduced a new normalized variable of

u≡ 2ε2∆/E2
s (2.7)

for the excess of path-length under Approximation B.

3. Plain descriptions of our Mellin transform 〈uκ〉 under Approximation B

Let dpB(u, s̄)/du be the probability density for electrons to show excessu of path-length in
the shower of agēs. Mellin transform of the probability density is expressed as

∫ ∞

0
uκ dpB(u, s̄)

du
du≡ 〈uκ〉, (3.1)

which shows that the meank-th moment〈uk〉 is the special value of the Mellin transform〈uκ〉 with
κ at the integerk. So, we can obtain our Mellin transform〈uκ〉 by generalizing the meank-th
moment〈uk〉 from integerk to realκ with interpolation [1]. The results are described plainly as
follows.
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We express the functions ofln{K(0)
0 (s̄,−s̄)}λ→λ1(s̄), ln{K(1)

0 (s̄,−s̄−2)}λ→λ1(s̄), andln{Λ(s̄)}λ→λ1(s̄)

explicitly by quartic polynomials;

ln{K(0)
0 (s̄,−s̄)}λ→λ1(s̄) ' a4s̄4 +a3s̄3 +a2s̄2 +a1s̄ with

a4 =−0.0130, a3 = 0.144, a2 =−0.522, a1 = 1.20, (3.2)

ln{K(1)
0 (s̄,−s̄−2)}λ→λ1(s̄) ' b4s̄4 +b3s̄3 +b2s̄2 +b1s̄+b0 with

b4 = 0.0176, b3 =−0.239, b2 = 1.10, b1 =−1.11, b0 = 3.24, (3.3)

ln{Λ(s̄)}λ→λ1(s̄) ' c4s̄4 +c3s̄3 +c2s̄2 +c1s̄+c0 with

c4 =−0.0101, c3 = 0.155, c2 =−0.984, c1 = 4.09, c0 = 2.54, (3.4)

by interpolating the exact values of those ats̄ = 1, 2, · · ·, and 5 derived through the recurrence
equations, escaping from the converging ambiguities of infinite series for those at non-integers̄ [1].

Then we expressln{φ (k)
0 (s̄;λ )/φ00(s̄;λ )}λ→λ1(s̄) under Approximation B by quadratic func-

tion of κ;

ln

{
φ (κ)

0 (s̄;λ )
φ00(s̄;λ )

}

λ→λ1(s̄)
' f1κ + f2κ2 ≡ f (κ) with (3.5)

f1 =−1
2 ln

{
φ (2)

0 (s̄;λ )
φ00(s̄;λ )

}

λ→λ1(s̄)
+2ln

{
φ (1)

0 (s̄;λ )
φ00(s̄;λ )

}

λ→λ1(s̄)
, f2 = ln

{
φ (1)

0 (s̄;λ )
φ00(s̄;λ )

}

λ→λ1(s̄)
− f1, (3.6)

where they denote

φ (1)
0 (s;λ )

φ00(s;λ )
=

v̂2 +(BC)s+2

D2
s+2

, (3.7)

φ (2)
0 (s;λ )

φ00(s;λ )
=

2
Ds+2Ds+4

[
4v̂4 +4v̂{2v̂+(λ +A(s+4))}(BC)s+4

D2
s+4

+
v̂2 +(BC)s+2

Ds+2

v̂2 +(BC)s+4

Ds+4

]
(3.8)

with v̂ ≡ λ + σ0, (BC)s ≡ B(s)C(s), andDs ≡ (λ − λ1(s))(λ − λ2(s)). On the other hand, as
K(κ)

0 (s̄,−s̄−2κ) diverges atκ = 2 due to the pole of the second degree [1] we expressln{(κ −
2)2K(κ)

0 (s̄,−s̄−2κ)/(4K(0)
0 (s̄,−s̄))}λ→λ1(s̄) by quadratic function ofκ;

ln

{
(κ−2)2K(κ)

0 (s̄,−s̄−2κ)

4K(0)
0 (s̄,−s̄)

}

λ→λ1(s̄)
' g1κ +g2κ2 ≡ g(κ) with (3.9)

g2 = 1
2 ln

{
Λ(s̄)

K(0)
0 (s̄,−s̄)

}

λ→λ1(s̄)
− ln

{
K(1)

0 (s̄,−s̄−2)

K(0)
0 (s̄,−s̄)

}

λ→λ1(s̄)
, g1 = ln

{
K(1)

0 (s̄,−s̄−2)

4K(0)
0 (s̄,−s̄)

}

λ→λ1(s̄)
−g2. (3.10)

Thus we have our Mellin transform of〈uκ〉 as

〈uκ〉=
s̄/2

κ + s̄/2

{
φ (κ)

0 (s̄;λ )
φ00(s̄;λ )

K(κ)
0 (s̄,−s̄−2κ)

K(0)
0 (s̄,−s̄)

}

λ→λ1(s̄)

' s̄/2
κ + s̄/2

4
(κ−2)2ef (κ)+g(κ). (3.11)

Though our〈uκ〉 was generalized from〈uk〉 with interpolation within0< κ < 2, we confirmed our
〈uκ〉 is enough reliable up to the extended region of−s̄/2≤ κ [1].
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Figure 4: The threshold-energyE dependence of the numberΠB(W0,E, t) (top left), the mean first moment
〈u〉 (bottom left), and the mean second moment〈u2〉 (right), appearing in the MC results with finiteE ’s. The
results withE = 0 show those of analytically derived.

4. Mean moments of excess-path-length distribution for shower electrons

We indicate the analytical results [1] of mean excess〈u〉 and root-mean-square excess
√
〈u2〉−〈u〉2

of path-length for shower electrons under Approximation A in Figs.1 and2. We also indicate those
of mean excess〈u〉 under Approximation B for the total shower electrons with the threshold energy
E of 0 in Fig.3 (lines), which can be derived from thek-th moment of Eq. (2.6) with k = 1 and the
ages̄determined by Eq. (2.4). Though, root-mean-square excess

√
〈u2〉−〈u〉2 of path-length with

the threshold energyE of 0 diverges under Approximation B, as〈u2〉 determined by Eq. (2.6) with
k = 2 diverges [1].

We compare the analytical results of mean excess〈u〉 for shower electrons with the incident
energyE0 of 104ε and the threshold energyE of 0 under Approximation B (lines) with the MC
results (dots) withE0 of 104ε andE of 0.01ε [2] in Fig. 3. We find the MC results show smaller
values about a half compared with the analytical results, which disagreements come from the dif-
ference of the threshold energiesE between the both.

We indicate in Fig.4 the threshold-energyE dependence of the numberΠB(W0,E, t), the mean
first moment〈u〉, and the mean second moment〈u2〉 of the shower electrons appearing in the MC
results. The mean excesses〈u〉 at E of 0.01ε appearing in the MC results also show about a half
of those atE of 0 derived from the analytical〈uκ〉 of Eq. (2.6) with k = 1, as indicated in Fig3.
The mean second moments〈u2〉 show strong dependence on the threshold energyE at finite energy
regions, as indicated in Fig.4. We have to take much care in evaluation of the threshold energy ofE,
in quantitative analyses of shower electrons relating to the root-mean-square width

√
〈u2〉−〈u〉2

of shower electrons.
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5. Excess-path-length distribution for shower electrons

We can derive the∆- or u-weighted excess-path-length distribution under Approximation B
[1], as

∆
dPB(E0,0,∆, t)

d∆
= u

dpB(u, s̄)
du

' 1
2π i

∫
u−κ〈uκ〉dκ (5.1)

from our Mellin transform〈uκ〉 of Eq. (3.11), wherePB(E0,0,∆, t) or pB(u, s̄) denotes the proba-
bility for the total shower electrons (the threshold energyE of 0) to show their excess-path-lengths
smaller than∆ or u. Thus we have

u
dpB(u, s̄)

du
' 2s̄u−κ̄ef (κ̄)+g(κ̄)

(κ̄ + s̄/2)(2− κ̄)2/

√
2π

{
f ′′(κ̄)+g′′(κ̄)+

1
(κ̄ + s̄/2)2 +

2
(2− κ̄)2

}
(5.2)

by the saddle point method, where the saddle pointκ̄ is taken at−s̄/2 < κ̄ < 2 satisfying

lnu = f ′(κ̄)+g′(κ̄)− 1
κ̄ + s̄/2

+
2

2− κ̄
. (5.3)

The results of excess-path-length distribution under Approximation A [1] and B are indicated in
Figs.5 and6 (lines).

We find the probability densitydpB/du starts withus̄/2−1 at the shower front ofu¿ 1, due
to the pole atκ = −s̄/2 in our Mellin transform〈uκ〉 of Eq. (3.11). This fact is a characteristic
property of the shower at the agēs, comparable with the fact that the lateral distribution decreases
with (ε2r2/E2

s )s̄/2−1 near the shower axis ofr ¿ 1 [4]. The density also falls withu−3 lnu atuÀ 1,
due to the pole of the second degree atκ = 2 included in our〈uκ〉. Note thatdpB/du is function
of only s̄, anddpB/dudoes not depend on the incident particle of electron or photon.

We compare our analytical results of excess-weighted probability densityudpB/du for shower
electrons with the incident energyE0 of 104ε and the threshold energyE of 0 under Approximation
B (lines) with those of the MC results [2] with E0 of 104ε andE of 0.01ε (dots) in Fig.6. We find
our analytical results of excess-path-length distribution agree fairly well with those derived by the
MC method, in spite of the difference of the threshold energiesE between the both.

6. Conclusions and discussions

Plain descriptions for our Mellin transform〈uκ〉 of excess-path-length distribution are pro-
posed for shower electrons under Approximation B with the threshold energyE of 0 (Section3).

The mean excesses〈u〉 ≡ 2ε2〈∆〉/E2
s of path-length for shower electrons with the threshold

energyE of 0 derived from Eq. (2.6) with k= 1 are compared with those derived by the MC method
with E of 0.01ε . The both increase similarly with the increase of traversed thickness, though show
different values about twice due to difference of the threshold energies between the both (Fig.3).

Threshold-energyE dependence of the meank-th moment of the excess distribution is investi-
gated fork of 0, 1, and 2 in the MC showers. The above difference in values of the mean excess〈u〉
is indicated again. Strong dependence of the mean second moment〈u2〉 on the threshold energy is
confirmed in finite regions ofE (Fig.4). Confirmation of the threshold energy will be important for

5
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quantitative analyses of shower experiments relating to the root-mean-square width of the shower
front (Fig.4).

The excess-weighted probability densitiesudp/du for shower electrons with the threshold
energyE of 0 derived analytically from our Mellin transform of〈uκ〉 are compared with those
derived by the MC method withE of 0.01ε. The both agreed fairly well, in spite of the difference
of the threshold energies between the both (Fig.6).

7. Acknowledgments

The authors are very indebted to Prof. Jun Nishimura for his valuable advices and encourage-
ments.

References

[1] T. Nakatsuka and K. Okei, to be submitted.

[2] T. Nakatsuka, K. Okei, H. Matsumoto, S. Tsuji, A. Iyono, S. Yamamoto, and J. Linsley, Proc. of38th
ICRC, Nagoya, PoS(ICRC2023)571.

[3] B. Rossi and K. Greisen, Rev. Mod. Phys.27, 240(1941).

[4] J. Nishimura, inHandbuch der Physik, Band 46, edited by S. Flügge (Springer, Berlin, 1967), Teil 2, p. 1.

6


	icrc2023b.pdf
	...




