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1. Introduction

Cascade-shower electrons show excess distribution of path-length due to the multiple Coulomb
scattering with the matters of traverse, which is observed as the arrival-time-distribution of shower
electrons in the air shower experiment. The distributions can be obtained from our Mellin transform
of (u¥), derived by solving the diffusion equation for the procégds [

Plain descriptions for the formulg@”) under Approximation B are proposed, and the mean
excess and the excess distribution of path-length averaged over shower electrons derived from our
(u¥) are indicated. The results are compared with those derived by a Monte Carlo (abbreviated by
MC, hereafter) calculatior?]. The threshold-energly dependence of the results, appearing in the
MC results, are also discussed.

2. The meank-th moment of the excess-path-length distribution for shower
electrons

Let 71(E, 6,A,t)dEdBdA and y(E, 8,A,t)dEdBdA be the numbers of electron and photon of
energyE, direction8 and excess-path-lengthwithin the infinitesimal ranges afE, d6 anddA,
at the traversed thickness bin the unit of radiation length3, '4]. Under the cascade process,
(E,8,A,t) andy(E, 8,A,t) satisfy the diffusion equation of

o (nEB.AD) _(-A B \(m\ 620 (m\ E2 ,(m\ & (m
0t<y(E,6,A,t)>_<C’ —00><y> 2anl\y) a2 o) ToE 0 ) @Y

where shower electrons lose their energiegdif in each traverse ofit by ionization with the
critical energies of 0 (Approximation A) or finite values (Approximation B). The operatérs
B’, C’ and the constantsp, € are indicated in Nishimuréd]. Note that the variablé in the
densities are expressed Byasri(E, 6,A,t) andy(E, 6,A,t), as they are axially symmetric with

We have thé&-th moment of excess-path-length distribution for total shower electrons Ewith
from 0 to) from the diffusion equation under Approximation,[as

% (Eo,0,t) :/O dE/O 2n6d9Jo(ZG)/O A*TI(E, 6,A,t)dA
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Especially fork = 0, we have the total number of shower electrons
1 [ds/(Eo\° st {Ps@o(sA)a—nis [0
Ma(Eo.0t) = ﬁ/? <£> i W WE {Ks (S’_S)}A%(s)
~ Ma(Eo,&,){KV (5 -F}a ayg  With (2.3)
S Y 1
In? = —A(Sit+ 3 (2.4)

indicated in the reviews of Rossi and Greisen, and Nishin®j4][wherel (Eo, €,t) denotes the
number of shower electrons under Approximation A arnsl called as the shower age. Thus we
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Figure 1: Mean excess{u) Figure 2: Root-Mean-Square ex- Figure 3: Mean excess(u)
of path-length under Approxi- cess/(u2) —(u?2 of path-length  of path-length under approxima-
mation A for shower electrons, under Approximation A for shower tion B for shower electrons, with
with the threshold energy di  electrons, with the threshold energy the threshold energlg of O and
andu = 2E2A/E2 [1]. of E andu = 2E2A/EZ [1]. u= 2e2A/E2.

have the meak-th moment of excess-path-length averaged over the total shower electrons, as

(k) 2Nk = K /= K, = =
Ky — F'B<EMN<ES> S @52 Ky (5-5-2K)
<A > - nB(EO7O,t) —\2¢2 S_+2k{%0(_./\)) K(()O)(_’_éj s or (2.5)
o — ZSZA}k 5 [@EnkPE-5-x
(u) = <{ E2 >— §+2k{¢b0(§;,\)) Kéo)(§_§) /\HM@’ (2.6)

where we introduced a new normalized variable of
u=2e?A/E2 (2.7)

for the excess of path-length under Approximation B.

3. Plain descriptions of our Mellin transform (u¥) under Approximation B

Let dps(u,s)/du be the probability density for electrons to show excesd path-length in
the shower of age. Mellin transform of the probability density is expressed as

/OmuKWdu: (), (3.1)

which shows that the medath moment(u¥) is the special value of the Mellin transforfu) with

K at the integek. So, we can obtain our Mellin transforfu®) by generalizing the meakth
moment(u*) from integerk to realk with interpolation []. The results are described plainly as
follows.
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We express the functions of{ Kc(,o) (S =9 r—r(s In{Kél) (S, —S=2)}ar—r (g, @andin{A(S) }x 1,5
explicitly by quartic polynomials;

IN{KY (5 -} rng ~ aS +aS+ P +as  with
as= —0.013Q ag = 0.144, a, = —0.522 a, = 1.20,

(3.2)
IN{KS" (5 ~5-2)}r g = baS + e+ 10, + iS4+ by with
by =0.0176 b3 = —0.239 b, =1.10, by = —1.11 by =3.24, (3.3)
IN{A(S}r—n (5 ~ CaS' +CaS + 2 + 15+ ¢Co  with
¢4 = —0.0101 c3 =0.155 ¢, = —0.984, c; = 4.09, ¢y = 2.54, (3.4)
by interpolating the exact values of thosesat 1, 2, ---, and 5 derived through the recurrence

equations, escaping from the converging ambiguities of infinite series for those at non-&jtidger

Then we expresm{(pék) (SA)/@o(SA) }a—a, (g Under Approximation B by quadratic func-
tion of k;

(K)
|n{"’0 @”} ~ fik + fok2=f(k)  with (3.5)
®S )
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f1——1ln{% & } +2In{% > } , fz—'”{% s —f1, (3.6)
2 @o(SA) Aha(d @o(SA) An @o(SA) An(S

where they denote
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with V= A 4 0p, (BC)s = B(S)C(S), andDs = (A — A1(S))(A — A2(s)). On the other hand, as
K(()”(s_,—sT— 2k) diverges atk = 2 due to the pole of the second degrékwWe expresdn{(k —
22Ky (5, —5-2K) /(4K (5 ~§))}a g by quadratic function ok;

©) 5 g
In (k—2)2Ky" (5-5-2K) } ~ 0K+ K2 =0q(K with
{ PRI . 1K +Q2 9(K)

1)z & 1),= =
zlln{ L } —In{KO(S’SZ)} , :In{w} e (310
902=3 K" (59 A—M() Ky (59 A—M1(5) . 4Ky (5-9) A—M(§ % (3.10)

(3.9)

Thus we have our Mellin transform of“) as

o 52 [@7ENKIE -5 2) 52 a4
() = K+S/2 | @o(SA) Kéo)(§—§§ e T K+5/2(k—2)2

f+ek) - (3.11)

Though our(u¥) was generalized frorfu¥) with interpolation withinQ < k < 2, we confirmed our
(u¥) is enough reliable up to the extended region-gf2 < k [1].
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Figure 4: The threshold-energy dependence of the numbg (Wb, E,t) (top left), the mean first moment
(u) (bottom left), and the mean second momes} (right), appearing in the MC results with finig's. The
results withE = 0 show those of analytically derived.

4. Mean moments of excess-path-length distribution for shower electrons

We indicate the analytical resultt] of mean excesé&u) and root-mean-square excegsu?) — (u)?
of path-length for shower electrons under Approximation A in Flgnd2. We also indicate those
of mean exces&) under Approximation B for the total shower electrons with the threshold energy
E of 0 in Fig.l3 (lines), which can be derived from tlkeh moment of Eq.2.€) with k=1 and the
agesdetermined by Eq2.4). Though, root-mean-square excegéu?) — (u)2 of path-length with
the threshold energy of 0 diverges under Approximation B, &s?) determined by Eq2.6) with
k = 2 diverges/l].

We compare the analytical results of mean exdegsor shower electrons with the incident
energyEp of 10%¢ and the threshold enerdy of 0 under Approximation B (lines) with the MC
results (dots) withEg of 10*¢ andE of 0.01¢ [2] in Fig. 3. We find the MC results show smaller
values about a half compared with the analytical results, which disagreements come from the dif-
ference of the threshold energiedetween the both.

We indicate in Figd'the threshold-enerdgy dependence of the numbag (Wp, E,t), the mean
first moment(u), and the mean second momeut) of the shower electrons appearing in the MC
results. The mean excesses at E of 0.01s appearing in the MC results also show about a half
of those atE of 0 derived from the analyticg*) of Eq. (2.6) with k =1, as indicated in Fi.
The mean second momeritg) show strong dependence on the threshold erErapyfinite energy
regions, as indicated in Fid. We have to take much care in evaluation of the threshold eneigy of
in quantitative analyses of shower electrons relating to the root-mean-squarey\dth— (u)?
of shower electrons.
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5. Excess-path-length distribution for shower electrons

We can derive thé\- or u-weighted excess-path-length distribution under Approximation B
[1], as

th(EO)OvA7t)_ dm(u’ng 1 —K K
o it _ﬁ/u (UF)dk (5.1)

from our Mellin transform(u®) of Eq. (3.11), wherePRs(Ep,0,A,t) or pg(u,s) denotes the proba-
bility for the total shower electrons (the threshold endggyf 0) to show their excess-path-lengths
smaller tham or u. Thus we have

dpe(u,§) _ 25U ¥ef(M+a(k) i 1 2
" du —(E+§Qx2_kv/vg"{f“Q+9(”+(E+§Qy+(2_fv} (®-2)

A

by the saddle point method, where the saddle poiisttaken at-s/2 < k < 2 satisfying

2
Kis2 2-k

Inu= f'(k)+d (k) — (5.3)
The results of excess-path-length distribution under Approximatiof] Ard B are indicated in
Figs.5and6 (lines).

We find the probability densitd ps /du starts withu¥/?~1 at the shower front ofi < 1, due
to the pole aik = —s/2 in our Mellin transform(u®) of Eq. 3.11). This fact is a characteristic
property of the shower at the agecomparable with the fact that the lateral distribution decreases
with (£2r2/E2)¥2-1 near the shower axis of< 1 [4]. The density also falls with—3Inu atu>> 1,
due to the pole of the second degre& at 2 included in our(u*). Note thatd ps /du s function
of only s, andd pg /du does not depend on the incident particle of electron or photon.

We compare our analytical results of excess-weighted probability dersfiy/dufor shower
electrons with the incident ener@y of 10* and the threshold enerdgof 0 under Approximation
B (lines) with those of the MC result&]with Eq of 10*¢ andE of 0.01¢ (dots) in Figl6. We find
our analytical results of excess-path-length distribution agree fairly well with those derived by the
MC method, in spite of the difference of the threshold energibgstween the both.

6. Conclusions and discussions

Plain descriptions for our Mellin transforfu®) of excess-path-length distribution are pro-
posed for shower electrons under Approximation B with the threshold eeo§¥) (Sectior3).

The mean excessés) = 2¢2(A)/E2 of path-length for shower electrons with the threshold
energyE of 0 derived from Eq.2.6) with k= 1 are compared with those derived by the MC method
with E of 0.01e. The both increase similarly with the increase of traversed thickness, though show
different values about twice due to difference of the threshold energies between the boB). (Fig.

Threshold-energi dependence of the me&th moment of the excess distribution is investi-
gated fork of 0, 1, and 2 in the MC showers. The above difference in values of the mean éxcess
is indicated again. Strong dependence of the mean second mamiean the threshold energy is
confirmed in finite regions dt (Fig.'4). Confirmation of the threshold energy will be important for
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Figure 5: Probability densities of
excess-path-length for shower elec-
trons under Approximation A a =
0.6, 1.0, 1.4, and 2.0 (thick lines),
together with those determined by
the single Rutherford scatterings (thin

Figure 6: Probability densities of excess-path-length for

shower electrons under Approximation B with the incident
energyEg of 10%¢ and the threshold enerdy of 0 att =

5, 10, 15, 20, and 25 (thick lines) together with those de-
termined by the single Rutherford scatterings (thin straight
) ) lines) (1], compared with those determined by the MC

straight lines)(f]. method withEg of 10*¢ andE of 0.01¢ (dots).

guantitative analyses of shower experiments relating to the root-mean-square width of the shower
front (Fig.4).

The excess-weighted probability densitiedp/du for shower electrons with the threshold
energyE of O derived analytically from our Mellin transform @b*) are compared with those
derived by the MC method witk of 0.01s. The both agreed fairly well, in spite of the difference
of the threshold energies between the both (6)g.
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