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The interaction of gamma rays and cosmic rays with the Earth’s atmosphere initiate air showers
that, in turn, induce the emission of Cherenkov photons detectable by ground-based Imaging At-
mospheric Cherenkov Telescopes (IACTs). Any data analysis software for gamma-ray astronomy
with IACTs requires an essential component to discriminate the nature of the primary particle, as
well as to reconstruct its energy and arrival direction. In this field, the standard reconstruction
approach is to use supervised machine learning techniques, mostly based on decision trees or
Random Forest, which build models by training on simulated data using image and stereoscopic
parameters as input features. This approach can be overcome by deep learning techniques, directly
operating on pixelated camera images recorded by the array telescopes as input to models. In this
way, all available information per each shower image can potentially be exploited for reconstruc-
tion, without relying solely on derived parameters. We evaluated some deep learning techniques
on Monte Carlo simulated data of the ASTRI Mini-Array, an array of nine dual-mirror 4-m class
IACTs under deployment at the Observatorio del Teide (Tenerife, Spain), sensitive to gamma-ray
radiation in the 1-200 TeV energy range. In this contribution we present how deep learning al-
gorithms such as convolutional neural networks can be used to reconstruct events acquired by the
ASTRI Mini-Array; we will first describe the analysis work flow and introduce the architectures,
and then compare the performance obtained with the new reconstruction methods with that of
standard method.
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1. Introduction

Convolutional Neural Networks (CNNs) have made a significant impact in the field of com-
puter science [1], particularly in the realm of computer vision. This breakthrough can be attributed
not only to the formal codification of their building blocks during the latter half of the previous
century, but also to the advancements in hardware technology. Notably, the emergence of the
CUDA [2] programming language by Nvidia in 2007 enabled the utilization of Graphical Pro-
cessing Units (GPUs) for general-purpose programming. Consequently, the scientific community
began to develop algorithms and effectively employ these techniques to address a wide range of
interdisciplinary challenges.

In recent years, there has been an exceptional surge of interest within the machine learning
community, driven by the remarkable performance of generative models in both image and text
domains. This momentum is ongoing, as the field continues to witness the development of in-
creasingly impressive models. Additionally, novel concepts and network components, such as the
attention mechanism [3] and transformers [4], originally designed for Natural Language Processing
(NLP), have successfully found applications in computer vision problems as well. While initially
emerging from industry rather than academia, these innovations have demonstrated their versatility
in general-purpose contexts, prompting their rapid adoption by the scientific community across
various domains of knowledge.

Different deep learning techniques and approaches are also being investigated in the context
of very high-energy (VHE) astrophysics [5] and, in particular, of Imaging Atmospheric Cherenkov
telescopes (IACTs) arrays [6] to reconstruct the physical properties of the recorded events [7-9].
The ultimate aim is to overcome the performance of standard, consolidated reconstruction methods
implemented in the typical IACT standard analysis chains (see e.g. [10, 11]) by exploiting all
available information per each shower image [12].

In this work we present a first preliminary investigation of some deep learning techniques in
the context of the ASTRI Mini-Array [13], an array of nine dual-mirror 4-m class IACTs under
deployment at the Observatorio del Teide (Tenerife, Spain) aimed to observe the gamma-ray sky in
the 1-200 TeV energy range. More information on the system and its scientific goals can be found
in [14].

2. Analysis work flow

The analysis work flow adopted for the present study can be divided into three stages:

1. Single-telescope image selection and multi-image input generation: the main inputs of our
analysis work flow are single-telescope cleaned Cherenkov images!. The input data (FITS)
files were taken from the so-called ASTRI MA Prod2-Teide production [15], specifically at
the Data Level 1b (DL1b) [10]. These files, obtained through the standard ASTRI pipeline
(v0.3.1), contain cleaned and parameterized data from all the nine telescopes comprising the
ASTRI Mini-Array. We considered diffuse gamma, proton, and electron species with Zenith

Details on the two-threshold (LL1/L.2) two-pass cleaning algorithm implemented in the ASTRI pipeline can be found
e.g. in [10]. For the present analysis, a value of 10 pe for L1 and 5 pe for L2 (half of the L1 value) were set.
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and Azimuth telescope pointing directions equal to 20° and 0° (i.e. North), respectively.
Then, single-telescope cleaned images that passed typical selection criteria? were combined
to create multi-image inputs of each Cherenkov event (see Figure 2), for all considered
species. These multi-images were then stored and referenced in both a MariaDB database
and an on-premise object storage system. The latter serves as a convenient service that can
be queried via HTTP requests from any application, and it also functions as a caching system
for dvc? (the data versioning software).

2. Machine learning pipeline: an efficient machine learning pipeline based on TensorFlow#
libraries was implemented. The pipeline is effectively managed using dvc, which not only
facilitates the handling of stages through a simple yam1> file but also enables data versioning.
By leveraging the robust mechanisms of git, one can easily switch between different versions
of not only the code but also the data. For each considered deep learning method (see
Sec. 2.1), look-up-tables (LUTs) for the reconstruction of the Cherenkov events were created
from suitable training data samples of multi-image files of diffuse gamma and proton species.
The LUTs were applied then to the remaining (testing) data samples of each species. The
machine learning pipeline outputs are the fully-reconstructed array-wise Cherenkov events
with parameters comprising the probability of an event being a gamma particle (gammaness),
reconstructed energy, and estimated arrival direction®.

3. Reconstruction and performance analysis: the fully-reconstructed Cherenkov events (of the
testing data samples), including reconstructed parameters from all considered deep learning
methods (see Sec. 2.1) and those achieved with the standard method (based on Hillas pa-
rameters [16] and Random Forest [17]) implemented in the official ASTRI pipeline, were
stored in both the supporting database for subsequent offline analysis and the standard ASTRI
DL2b [10] (FITS) files. Then, a reconstruction and a performance analysis were performed
to assess, on a comparison basis, the effectiveness of each reconstruction method. The
reconstruction analysis is aimed to produce Quality (Q) factor and Receiver Operating Char-
acteristic (ROC) curves, whereas the performance analysis goal is to assess the overall
differential sensitivity of the system, as a function of the off-axis.

2.1 Neural network architectures

For this work, several Convolutional Neural Network (CNN) architectures were trained and
evaluated using the ASTRI Mini-Array Monte Carlo simulated data samples mentioned in Sec. 2;
the most interesting results are obtained via a conventional CNN implementation and a well-known
model such as ResNet50 [18]. The ResNet50 model was enriched with attention module such as

2Namely, the filter cuts applied to single-telescope images of all telescopes for all considering species were: SIZE >
50 [phe], LEAKAGE < 0.1, NUMISLANDS < 2 [10].

3https://www.dvc.org/

4https://www.tensorflow.org/

Shttps://yaml.org/

6]t is worth mentioning that in this work we considered energy reconstruction and arrival direction estimation for the
Cherenkov events (belonging to the testing data samples) exclusively from the standard method, obtained through the
standard ASTRI pipeline [10]. The investigation of the energy reconstruction and arrival direction estimation achieved
with deep learning techniques will be addressed in future work.
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the Convolutional Block Attention Module (CBAM) [19] and Squeeze and Excitation (SE) [20],
which emerged as particularly intriguing models also in very high-energy (VHE) astrophysics [8];
to the best of the authors’ knowledge though, only the SE mechanism has been tested on Cherenkov
data [9], while the CBAM is a novelty in this field.

The Custom CNN, implemented using keras’, is designed for image processing tasks and can
be used for regression or classification based on the task parameter. The Custom CNN starts with
rescaling input multi-images between 0 and 1. It consists of three convolutional layers with ReLU
activation. The first and second Conv2D layers have 64 filters with a kernel size of (3, 3), while
the last Conv2D layer has 128 filters of the same size. MaxPooling2D layers are added after each
Conv2D layer to reduce spatial dimensions and retain important information. The output is flattened
and passed to a Dense layer with ReLLU activation. A Dropout layer with a rate of 0.3 helps prevent
overfitting. The final Dense layer has one unit for regression or a variable number for classification,
with a sigmoid activation function for class probabilities.

@ Rescaling . Cconv2D . MaxPooling2D . Flatten . Dense @ Dropout . Activation

Figure 1: Custom CNN visual representation. It can be seen the squeezing action of the layers reducing the
input size up to the flatten layer, which prepare to the fully connected last step.

The CBAM network incorporates the Convolution Block Attention Module (CBAM) to enhance
representation. It includes a Channel Attention Module (CAM) that assigns adaptive weights
to feature map channels, emphasizing relevant channels. The Spatial Attention Module (SAM)
captures spatial dependencies, highlighting important regions. CBAM combines channel attention
weights and spatial attention maps through element-wise multiplication, resulting in attention-
enhanced feature maps. CBAM is compatible with various CNN architectures and was integrated
with ResNet50 in this work.

The SE mechanism enhances CNNs by modeling channel-wise dependencies. It applies global
average pooling to capture channel-wise statistics. In the excitation step, a small fully connected
network learns channel-wise attention weights based on the squeezed features. Multiplying the
attention weights with the original feature maps produces attention-reweighted feature maps. The
SE mechanism can be integrated into different CNN architectures, improving their discriminative
power: as well as for CBAM, SE has enriched a ResNet50 model in this work.

2.2 Input and output data

The ASTRI Mini-Array is an array of nine Cherenkov telescopes. Each telescope’s Cherenkov
camera has 37 squared active Photo-Detector Module (PDM) (each of 64 pixels), arranged in a sort

"https://keras.io
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of cross layout; the event multi-images (inputs of the machine learning pipeline) were generated
setting to black the non existing PDMs in a simplified square layout of 56x56 pixels (rescaling
input images between O and 1). In order to maximize the information carried by the input for the
neural network models, it was decided to use as input the stacking of event images (with a minimum
number of images per event equal to two) as seen by single telescopes (see Fig. 2).

(a) gamma (b) proton (¢) electron

Figure 2: Sample of images of stereoscopic events. Only events with at least two images surviving the
single-telescope image cleaning and selection criteria were taken into account in the analysis.

To get the single-telescope images that make up the multi-images, after a calibration step,
each single-telescope image was cleaned in order to suppress some of the background noise?; then
standard quality cuts were applied on Hillas parameters basis, mainly in order to discard images
recorded too close to the camera edge (LEAKAGE<0.1) and with small SIZE (SIZE<50 [phe]).

To build the training data samples, a logarithmic binning in SIZE was applied, and then the
same number of diffuse gamma and proton events® were randomly picked in each bin: this pruning
step is a quite important procedure when doing Random Forest analysis which is expected to
have a lighter impact when using deep learning techniques; the aim, however, was to get a direct
comparison with the standard analysis: in this way, all the models used were trained and tested on
the same number of events, and this is also important for the performance analysis (Sec. 4).

All the models were trained with the same gamma/proton dataset, where ~1.8x10° stereoscopic
events (multi-images for deep learning methods), corresponding to ~6x 10’ single-telescope images,
were selected for each population, equalizing their numbers in each SIZE bin. The final machine
learning reconstruction models to be compared were dubbed: standard method (STD), Custom
CNN (CUSTOM), Convolutional Block Attention Module (CBAM), and Squeeze and Excitation
(SE). For each of them, the fully-reconstructed Cherenkov events (belonging to the testing data
samples) were computed and used for the reconstruction (Sec. 3) and performance analysis (Sec. 4).

3. Reconstruction analysis

The reconstruction analyses were divided in three (reconstructed) energy bins: E€ [107%3, 10%-3]
TeV, E € [100'5 , 101'5] TeV, and E € [101'5, 102'5] TeV. For a statistical comparison of the results,

8Details of the calibration and cleaning algorithms can be found in [10], where the standard ASTRI Mini-Array data
processing pipeline is described in details.
°It is worth mentioning that the electron population was used only at the inference stage.
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the ROC curves with their Area Under the Curve (AUC) score were computed (see Fig. 3 and

Tab. 1), together with the Q factor, defined as Q = \%, where €, is the fraction of well classified

gammas, and €y, is the fraction of protons misclassified as gammas (see Fig. 4).

std AUC: 0.91 std AUC: 0.96 std AUC: 0.93
cbam AUC: 0.95 cbam AUC: 0.97 cbam AUC: 0.95
custom AUC: 0.86 custom AUC: 0.94 custom AUC: 0.93
se AUC: 0.92 06 se AUC: 0.96 06 se AUC: 0.95

— std analysis — std analysis
cbam CBAM CBAM
— custom_cnn — custom_cnn — custom_cnn

— se 0.0 — se 0.0 — se

— std analysis

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

(a) ROC, first energy bin. (b) ROC, second energy bin. (¢) ROC, third energy bin.

Figure 3: ROC curves for the four considered reconstruction methods, in each energy bin.

Energy bin STD CUSTOM CBAM SE
E €[10793,1091  0.91 0.86 095 092
E € [1093,1015] 096 0.94 097  0.96
E € [1019,10%3]  0.93 0.93 095 095

Table 1: AUC score comparison for the four considered methods, in each energy bin.

— std — std 8 — std
cbam cbam cbam
— custom_nn — custom_nn — custom_nn
35 — se 6 — se — se

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Q factor curves, first energy bin.  (b) Q factor curves, second energy bin. (c) Q factor curves, third energy bin.

Figure 4: Q factor curves for the four considered reconstruction methods, in each energy bin.

While ROC and AUC results are quite similar, with the exception of the CUSTOM method,
which seems to provide lower discriminating power than all other methods, Q factor curves suggest
an improvement in discriminating power over STD method for SE and, in particular, CBAM
method. Further considerations can be drawn at the end of section 4, where the performance
analysis is discussed.

4. Performance analysis

For all considered reconstruction methods, we derived the point-like source differential sensi-
tivity of the ASTRI Mini-Array in 50 hours for five off-axis bins from 0° to 5° in the reconstructed
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energy range between 10797~ 0.3 TeV and 10?7~ 300 TeV (using five logarithmic energy bins per
decade). To do that, we used the standard software tools and procedure currently implemented in the
ASTRI pipeline (more details can be found in [15]; see also [21]). Since we found a common, rela-
tive trend among the different methods in all the different off-axis bins, we considered the averaged
off-axis differential sensitivity in the entire range from 0° to 5° for better comparison. Resulting
sensitivity curves are shown in Fig. 5. The ratios between the sensitivity obtained by CUSTOM,
CBAM, and SE methods and that of STD are also shown. While the CUSTOM and SE methods pro-
vide differential sensitivities that are generally worse than those obtained with the standard method
below ~10!7~ 50 TeV and slightly better above that energy, the CBAM method outperforms the
STD one in the whole energy range. In particular, for energies above ~10'~ 10 TeV the CBAM
method reaches an averaged gain in performance up to 40%. This is an encouraging result that
certainly deserves further investigations.
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Figure 5: Left: ASTRI Mini-Array averaged off-axis (from 0° to 5°) point-like source differential sensitivity
(at a zenith angle of 20° and an azimuth angle of 0°) for four different methods: STD (blue dashed line),
CBAM (orange points), CUSTOM (green points), SE (red points). The Crab Nebula spectral model (grey
lines) is taken from [22]. Right: Ratios between the sensitivity obtained by CUSTOM, CBAM, and SE
methods and that of STD. The ratios are calculated so that higher values correspond to better performance.

5. Summary and outlook

In this contribution we presented a first preliminary investigation of some deep learning
techniques in the context of the ASTRI Mini-Array. For our study, we exclusively made use
of Monte Carlo simulated data. Although some interesting results were found, the work is still in
progress. First step the authors will take, will be that of modifying the input: no more stacked
multi-images of the same Cherenkov event as seen from different telescopes will be used, but tiled
multi-images, following the recent tendency in scientific literature [9, 23, 24], which seems to
provide better results, particularly for energy and direction reconstruction, not considered in this
work. In parallel, temporal information will be added as another channel to the image signal, in
order to enrich event information to be given as input to the networks. Another activity will be to let
the machine learning pipeline be more and more efficient, with faster data batches loading; a move
to PyTorch!© is ongoing and will be compared with the actual TensorFlow pipeline, as soon as it

Ohttps://pytorch.org/
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is ready. The ultimate aim of our efforts is to provide an alternative, consolidated reconstruction
pipeline based on improved deep learning methods for the reduction of both Monte Carlo simulated
and real data of the ASTRI Mini-Array.
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