Performance update of an event-type based analysis for the Cherenkov Telescope Array

J. Bernete, O. Gueta, T. Hassan, M. Linhoff, G. Maier and A. Sinha for the CTA Consortium

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040 Madrid, Spain
DESY, Platanenallee 6, 15738 Zeuthen, Germany
Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
IPARCOS-UCM, Instituto de Física de Partículas y del Cosmos, and EMFTEL Department, Universidad Complutense de Madrid, E-28040 Madrid, Spain
E-mail: juan.bernete@ciemat.es

The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. The traditional approach to data analysis in this field is to apply quality cuts, optimized using Monte Carlo simulations, on the data acquired to maximize sensitivity. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs) to physically interpret the results. However, an alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. This approach divides events into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. In previous works we demonstrated that event types, classified using Machine Learning methods according to their expected angular reconstruction quality, have the potential to significantly improve the CTA angular and energy resolution of a point-like source analysis. Now, we validated the production of event-type wise full-enclosure IRFs, ready to be used with science tools (such as Gammapy and ctools). We will report on the impact of using such an event-type classification on CTA high-level performance, compared to the traditional procedure.
1. Introduction

The Cherenkov Telescope Array (CTA)\(^1\) represents the next-generation observatory in the field of very-high-energy gamma-ray astroparticle physics. It employs two arrays of imaging atmospheric Cherenkov telescopes (IACTs), one for each hemisphere, composed of telescopes of three different sizes. Its optimized configuration provides a major improvement in sensitivity and in angular and energy resolution with respect to the current generation of IACTs over a very broad energy range from 20 GeV up to more than 300 TeV.

The performance of this future observatory is estimated from detailed Monte Carlo (MC) simulations, described by a set of Instrument Response Functions (IRFs). The main IRF components describing the instrument performance to gamma-ray observations are the effective area, the energy dispersion and point-spread function (PSF). These IRFs are then used by science tools (such as gammapy [6] and ctools [10]) to simulate the instrument performance over specific science cases. The methodology to calculate the expected sensitivity and associated IRFs of CTA, as well as their detailed description, has been described in previous contributions (see [2, 4, 8]) and is briefly discussed in section 3.

The Fermi Large Area Telescope (LAT) Collaboration [3] proved that high-level analysis performance can be significantly improved by separating events for which the response of the detector is different into event types and producing specific IRFs for each event type [5]. By including this extra knowledge into the likelihood analysis, multiple benefits are achieved: reducing background contamination, increasing the effective area and sensitivity as well as significantly improving the angular and energy resolution for a subset of the events. Inspired by the success of event types in Fermi-LAT, we present in this work the status of an analog implementation for IACTs, specifically for the future CTA.

This work is a natural continuation of Ref. [9], where we demonstrated that event types are able to improve the angular and energy resolution by up to 25% for a point-like source located at the center of the field of view (FoV). This first step did not allow the generalized use of event-type-wise IRFs at the science tools level to properly evaluate their impact over specific science cases.

In this work, we have validated the production of event-type-wise offset-dependent point-like and full-enclosure IRFs for CTA (i.e. valid for both point-like or extended sources located anywhere within the FoV). These IRFs, tailored to each event type, are now ready to be used by science tools. We also present the impact of this event-type classification on the high-level performance of CTA, comparing it to the standard procedure (not using event types), as well as evaluate the potential for further improvement with a better event-type classification.

2. Event type partitioning

Previous work successfully demonstrated the effectiveness of machine learning (ML) methods in separating event types based on their expected quality in angular reconstruction [9]. Our approach begins at the Data Level 2 (DL2), as the product of a classical IACT analysis, which classification score called *gammaness* and a list of lower-level parameters describing individual telescope images.
and stereo parameters (such as Hillas parameterization, reconstructed altitude of shower maximum, etc...).

An event type is a unique tag for each event in a DL2 table that classifies all them in terms of their quality in angular reconstruction. We use a ML regression model to predict the angular difference between true and reconstructed direction (from now on, predicted misdirection), so the division of event types reduces to establishing thresholds for the top X% reconstructed events (lowest predicted misdirection), the following Y%, etc. Where the number of event types and their proportions can be freely decided.

The event type partitioning methodology employed for this study is almost identical to the one described in the previous contribution [9] with the following differences:

- The MC simulated data used is diffuse (covering the full FoV of CTA telescopes) for gammas, protons and electrons.
- The regression model we use, a multilayer perceptron (MLP) neural network with a \(\tanh \) as neuron activation function, has been further optimized.
- The thresholds in predicted misdirection to divide the event types are now dependent in both energy and offset angle, instead of only energy.

3. IRF production

The standard methodology to compute CTA IRFs [2, 4, 8] starts from DL2 table. A re-weight of the simulated events is needed so that they resemble the particle statistics expected from a CTA observation of a Crab-Nebula-like source (as a test case). To compute IRFs a cut optimization is needed, generally maximizing sensitivity as a function of the reconstructed energy. Events surviving these quality cuts are the ones that will be used to compute the final set of IRFs. The cut optimization is usually performed over the following parameters: multiplicity (number of telescopes used in the reconstruction of an event), gammaness and, in the case of a point-like source analysis, the angular size of the signal region (ON region). Once CTA data is produced, the list of events surviving the gammaness and multiplicity cuts together with their corresponding IRFs form the Data Level 3 (DL3) products.

With this procedure, the amount of data surviving quality cuts (and therefore actually used in the analysis) is small compared to the rejected data, while the latter could still be useful. Furthermore, as there is only one set of IRFs generated applied equally for all events, all the extra knowledge we have from the low-level analysis is lost.

In an event-type based analysis, the event type partitioning (as explained in Section 2) occurs before optimizing the cuts and computing the IRFs. This allows to create a number of independent lists (as many as event types), each one with their corresponding set of IRFs describing their average quality.

To compute the IRFs and store them in the proper format\(^2\) we used the library pyirf\(^3\). This library first needed to be tested and validated to produce offset-dependent and full-enclosure IRFs.

\(^3\)https://github.com/cta-observatory/pyirf
To validate it, we compared the resulting sensitivity and IRFs to the ones computed by EventDisplay [11] with the same MC data. The tests consisted in two steps:

1. Validate pyirf IRF computation. By using identical DL2 tables, we compared the computed IRF components by using exactly the same quality cuts as EventDisplay. The results were identical, and therefore the computation of all IRF components was validated.

2. Validate pyirf cut optimization. We performed two independent cut optimizations (with pyirf and EventDisplay) by selecting the cuts that provide a better sensitivity in each energy bin, and compared resulting sensitivities. As shown in Fig. 1, they are not exactly the same but they agree to within 50% between 30 GeV and 100 TeV (also across different values of the FoV). The reason of the disagreement is not known, but is probably related to small differences in the cut selection methods (for example, EventDisplay uses smaller bins for the direction cuts).

After performing these tests, we conclude pyirf is suitable to our needs, as it allows us to compute both point-like and full-enclosure IRFs properly for all different camera offset angles up to 6 deg. Once the production of IRFs was validated, we produced various sets of event-type-wise IRFs, ready to be used with high-level science tools, in this case, Gammapy.

4. Results

We evaluate the expected angular reconstruction quality of all events, rank them and eventually classify them into different event-type partitionings to then produce event-type-wise offset-
dependent IRFs for 50 hours of observing time for the "Alpha" layout of CTA-North (4 LSTs and 9 MSTs) [7].

By computing the angular resolution for the ranked top 20% events as reconstructed by our model, we show a 25 to 50% improvement in angular resolution with respect to the standard cut optimization method (not using event types), as shown in Figure 2. We also computed the angular resolution for the true top 20% events, i.e.: ranking by the actual difference between the reconstructed and the true simulated position of each event, so we can see there is still room for improvement of our regression model.

We can use these IRFs to perform either 1D (spectral evaluations of point-like sources) or 3D (spectral and morphological studies) simulations with Gammapy. Datasets are simulated from a set of IRFs: we are able to perform simulations for a single IRFs set and for event-type-wise IRFs treating them as independent samples that may be combined in a joint-likelihood analysis. By doing this with a Crab-like source simulations over a wide range of fluxes, we can reconstruct the combined sensitivity from all event types as shown in Figure 3, by identifying over each bin in reconstructed energy the simulated flux that provides a 5σ detection. Note this method to compute sensitivity (for any set of observations or simulations at Gammapy level) does not have the usual requirements generally included in the calculation of sensitivity, such as the requirement of the excess being larger than a 5% of the background (to account for systematics in the background) or the minimum number of 10 excess events (heavily affecting the sensitivity at the highest energies), which is the main reason of the disagreements at the lowest and highest energies with the pyirf-estimated curve.

5. Conclusions

The conclusions of this work can be summarized by the following milestones:

1. Our ML regression model is able to predict the misdirection of each event and, therefore, can be used to separate event types. It should be noted there is still room for improvement.
Figure 3: Preliminary sensitivity curve reconstructed with Gammapy by doing a likelihood analysis with combined event types (4 types with 25% of the events each) and with no event types, compared to the standard sensitivity computed with pyirf. Note that Gammapy-estimated sensitivity does not take into account any conditions on background systematics and minimum number of excess events, which affect the highest and the lowest energies.

2. Offset-dependence has been introduced and validated in the event-type partitioning process.

3. We are now able to produce consistently both point-like and full-enclosure event-type-wise IRFs over the full FoV, which allows high-level simulations with science tools such as Gammapy.

4. Event-type-wise IRFs show a significant improvement in angular resolution (25 to 50% over a subset of the events).

5. Preliminary Gammapy analysis already shows that it is possible to combine observations from different event-type samples for a better performance.

This work shows the great potential that an event-type based analysis could have for improving CTA’s performance. A specific science case for fundamental physics with gamma-ray propagation [1] that could be benefited by event types is measuring intergalactic magnetic fields, in which the size of the PSF is crucial. Another important example is the Galactic Plane Survey, where the improved angular resolution at large offset angles will allow to separate sources and determine extensions and morphologies better than ever in this energy range.
Acknowledgements

This work was conducted in the context of the CTA Consortium and CTA Observatory. We gratefully acknowledge financial support from the agencies and organizations listed here: http://www.cta-observatory.org/consortium_acknowledgments.

References

The CTA Consortium

Affiliations

1 Department of Physics, Tokai University, 4-1-1, Kita-Kaname, Hiratsuka, Kanagawa 259-1292, Japan
2 Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwa-no-ha, Kashiwa, Chiba 277-8582, Japan
3 University of Alabama, Tuscaloosa, Department of Physics and Astronomy, Gallalee Hall, Box 870324 Tuscaloosa, AL 35487-0324, USA
4 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, France
5 Laboratoire Leprince-Ringuet, CNRS-IN2P3, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
6 Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès, 1, 08028, Barcelona, Spain
7 Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, Spain
8 Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago, Chile
9 IPARCOS-UCM, Instituto de Física de Partículas y del Cosmos, and EMFTEL Department, Universidad Complutense de Madrid, E-28040 Madrid, Spain
10 Instituto de Física Teórica UAM/CSIC and Departamento de Física Teórica, Universidad Autónoma de Madrid, c/ Nicolás Cabrera 13-15, Campus de Cantoblanco UAM, 28049 Madrid, Spain
11 LUTH, GEPI and LERMA, Observatoire de Paris, Université PSL, Université Paris Cité, CNRS, 5 place Jules Janssen, 92190, Meudon, France
12 INFN - Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5 - 50125 Firenze, Italy
13 INFN - Osservatorio Astronomico di Roma, Via di Frascati 33, 00040, Monteporzio Catone, Italy
14 TÜBİTAK Research Institute for Fundamental Sciences, 41470 Gebze, Kocaeli, Turkey
15 INFN Sezione di Napoli, Via Cintia, ed. G, 80126 Napoli, Italy
16 INFN Sezione di Padova, Via Marzola 8, 35131 Padova, Italy
17 Laboratoire Univers et Particules de Montpellier, Université de Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France
18 Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD, Groningen, The Netherlands
19 Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400 - CEP 13566-590, São Carlos, SP, Brazil
20 Astroparticle Physics, Department of Physics, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany
21 Department of Physics, Chemistry & Material Science, University of Namibia, Private Bag 13301, Windhoek, Namibia
22 Centre for Space Research, North-West University, Potchefstroom, 2520, South Africa
23 School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
24 Department of Astronomy, University of Geneva, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland
25 Faculty of Science and Technology, Universidad del Azuay, Cuenca, Ecuador.
26 Deutsches Elektronen-Synchrotron, Platanenallee 6, 15738 Zeuthen, Germany
27 Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, RJ 22290-180, Rio de Janeiro, Brazil
28 Instituto de Astronomía, Geofísica e Ciências Atmosféricas - Universidade de São Paulo, Cidade Universitária, R. do Matão, 1226, CEP 05508-090, São Paulo, SP, Brazil
29 INFN Sezione di Padova and Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy
30 Institut für Physik & Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
95 Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, CEP 03828-000, 1000 São Paulo, Brazil
96 Astronomical Observatory of Taras Shevchenko National University of Kyiv, 3 Observatorna Street, Kyiv, 04053, Ukraine
97 The University of Manitoba, Dept of Physics and Astronomy, Winnipeg, Manitoba R3T 2N2, Canada
98 RIKEN, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
99 INFN Sezione di Roma La Sapienza, P.le Aldo Moro, 2 - 00185 Roma, Italy
100 INFN Sezione di Perugia and Università degli Studi di Perugia, Via A. Pascoli, 06123 Perugia, Italy
101 INAF - Istituto di Astrofisica e Planetologia Spaziali (IAPS), Via del Fosso del Cavaliere 100, 00133 Roma, Italy
102 Department of Physics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
103 Alikhanyan National Science Laboratory, Yerevan Physics Institute, 2 Alikhanyan Brothers St., 0036, Yerevan, Armenia
104 INFN Sezione di Catania, Via S. Sofia 64, 95123 Catania, Italy
105 Université Paris Cité, CNRS, CEA, Astroparticule et Cosmologie, F-75013 Paris, France
106 Universidad Andres Bello, República 252, Santiago, Chile
107 Universidad Nacional Autónoma de México, Delegación Coyoacán, 04510 Ciudad de México, Mexico
108 Núcleo de Astrofísica e Cosmologia (Cosmo-ufes) & Departamento de Física, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, 514. 29065-910. Vitória-ES, Brazil
109 Astrophysics Research Center and Department of the Open University (ARCO), The Open University of Israel, P.O. Box 808, Ra’anana 4353701, Israel
110 Department of Physics, The George Washington University, Washington, DC 20052, USA
111 University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE, United Kingdom
112 King’s College London, Strand, London, WC2R 2LS, United Kingdom
113 Department of Physics, Yamagata University, Yamagata, Yamagata 990-8560, Japan
114 Learning and Education Development Center, Yamashita-Gakuin University, Kofu, Yamanashi 400-8575, Japan
115 IRAP, Université de Toulouse, CNRS, CNES, UPS, 9 avenue Colonel Roche, 31028 Toulouse, Cedex 4, France
116 Universität Innsbruck, Institut für Astron- und Teilchenphysik, Technikerstr. 25/8, 6020 Innsbruck, Austria
117 Palacký University Olomouc, Faculty of Science, Joint Laboratory of Optics of Palacky University and Institute of Physics of the Czech Academy of Sciences, 17. listopadu 1192/12, 779 00 Olomouc, Czech Republic
118 Finnish Centre for Astronomy with ESO, University of Turku, Finland, FI-20014 University of Turku, Finland
119 Josip Juraj Strossmayer University of Osijek, Trg Ljudevita Gaja 6, 31000 Osijek, Croatia
120 Gran Sasso Science Institute (GSSI), Viale Francesco Crispi 7, 67100 L’Aquila, Italy and INFN-Laboratori Nazionali del Gran Sasso (LNGS), via G. Acitelli 22, 67100 Assergi (AQ), Italy
121 Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila and GSGC-LNGS-INFN, Via Vetoio 1, L’Aquila, 67100, Italy
122 Faculty of Physics and Applied Computer Science, University of Łódź, ul. Pomorska 149-153, 90-236 Łódź, Poland
123 Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244 Cracow, Poland
124 Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany
125 Univ. Grenoble Alpes, CNRS, IPAG, 414 rue de la Piscine, Domaine Universitaire, 38041 Grenoble Cedex 9, France
126 Astronomical Institute of the Czech Academy of Sciences, Bocni II 1401 - 14100 Prague, Czech Republic

127 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112-0830, USA

128 Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland

129 Institute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba, 305-0801, Japan

130 School of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, United Kingdom

131 Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia

132 Université Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 19 Chemin du Solarium, F-33170 Gradignan, France

133 INFN Sezione di Trieste and Università degli Studi di Trieste, Via Valerio 2 1, 34127 Trieste, Italy

134 Instituto de Astrofísica de Canarias and Departamento de Astrofísica, Universidad de La Laguna, La Laguna, Tenerife, Spain

135 Escuela Politécnica Superior de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, Edif. A3, 23071 Jaén, Spain

136 Anton Pannekoek Institute/GRAPPA, University of Amsterdam, Science Park 904 1098 XH Amsterdam, The Netherlands

137 Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata 700064, West Bengal, India

138 Università degli studi di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana”, Via S. Sofia 64, 95123 Catania, Italy

139 Dipartimento di Fisica e Chimica “E. Segre”, Università degli Studi di Palermo, Via Archirafi 36, 90123, Palermo, Italy

140 UCM-ELEC group, EMFTEL Department, University Complutense of Madrid, 28040 Madrid, Spain

141 Departamento de Ingeniería Eléctrica, Universidad Pontificia de Comillas - ICAI, 28015 Madrid

142 Universidad de Chile, Av. Libertador Bernardo O’Higgins 1058, Santiago, Chile

143 Institute of Space Sciences (ICE, CSIC), and Institut d’Estudis Espacials de Catalunya (IEEC), and Institució Catalana de Recerca i Estudis Avançats (ICREA), Campus UAB, Carrer de Can Magrans, s/n 08193 Cerdanyola del Vallés, Spain

144 The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Cracow, Poland

145 IPARCOS Institute, Faculty of Physics (UCM), 28040 Madrid, Spain

146 Department of Physics, Konan University, Kobe, Hyogo, 658-8501, Japan

147 Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

148 Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, USA

149 School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan

150 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA

151 University of Białystok, Faculty of Physics, ul. K. Ciolkowskiego 1L, 15-245 Białystok, Poland

152 Charles University, Institute of Particle & Nuclear Physics, V Holešovičkách 2, 180 00 Prague 8, Czech Republic

153 Astronomical Observatory of Ivan Franko National University of Lviv, 8 Kyryla i Mephodia Street, Lviv, 79005, Ukraine

154 Institute for Space—Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

155 Kobayashi—Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

156 INAF - Osservatorio Astronomico di Palermo “G.S. Vaiana”, Piazza del Parlamento 1, 90134 Palermo, Italy