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The High Altitude Water Cherenkov (HAWC) observatory is highly suitable for large-scale survey
work. The high duty time (95%), large instantaneous FoV (2 sr), and sensitivity over the 300
GeV to more than 100 TeV energy range make it ideal for creating a catalog of very high energy
(VHE) sources. Over the lifetime of the HAWC observatory, 4 catalogs have been produced 3 of
which were constructed utilizing the full HAWC energy range while another used a restricted (>56
TeV) range. This talk will focus on the status of the planned 4HWC (full energy range) catalog
including the newly developed Multi-Source Fit algorithm inspired by the Fermi Extended Source
search method for the galactic plane. Using at least an additional 1000 days of data, improved
event reconstruction algorithms using HAWC’s newly completed fifth pass through its dataset,
and the improved search algorithm we expect to see a major improvement in the sensitivity and
accuracy compared to previous catalogs. Additionally, this talk will present preliminary results
from tests of the algorithm in “Benchmark” regions in HAWC data, including but not limited to,
the Crab Nebula and The Cygnus Cocoon
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1. The Multi-Source Fit Algorithm

The newest improvement to the HAWC 𝛾-ray catalog is an adaptation and extension of methods
used in other source catalogs such as the Fermi Galactic Extended Source Catalog[1] and 1HWC
catalogs. While the logical structure of the Multi-Source Fit (MSF) method is based on the Fermi
Extended Source Method used in the Fermi Galactic Extended Source Catalog this implementation
is greatly expanded to perform a blind point source search of the 𝛾-ray data in HAWC and perform
both an "Extension" and "Curvature" test. I will go through each subsection of the MSF algorithm
in the order it is run. The subsections are Point Source Search, Extension Test and Distance Cut,
Curvature Test, and a Final Refit.

1.1 Point Source Search

The point source (PS) search begins by looking at the generated significance map made by the
putative PS search [2] common to nearly all significance maps seen from the HAWC observatory.
Depending on the galactic latitude of the center of the region of interest (ROI) that the method
is using we first add a simple Diffuse Background Emission (DBE) Model which consists of an
elongated Gaussian emission model in the direction of the galactic plane that extends±1◦ in latitude.
The DBE model has a fixed morphology and spectral index (Γ = −2.75) based on a simple power
law. The Flux normalization is fit and the fit moves onto adding PSs with a simple power law
assumption.

𝑆𝑖𝑚𝑝𝑙𝑒𝑃𝑜𝑤𝑒𝑟𝐿𝑎𝑤 = 𝑁0

(
𝐸

𝐸0

)−Γ
If the ROI is far away from the plane (>10◦) no DBE model is added and instead we immediately
move to the PS adding phase. The PS adding begins by finding the pixel with the largest significance
in the map and using the pixel’s location as the initial guess for the PS model. After the maximum
likelihood model is found with the added PS we create a residual map by subtracting the model
map from the data map and we find the new most significant pixel in this residual map which serves
as the guess for a new PS model. Before moving to add the next PS model we freeze the location
parameters for the PS model fit during this step. After the first point source is added and the location
frozen we create a test statistic (TS)

𝑇𝑆 = 2 · log
𝐿𝐹𝑖𝑡𝑀𝑜𝑑𝑒𝑙

𝐿𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

where the Fit Model is the result from the current model and background is the result from the
previous fit model. For example, when adding the 4th PS we will compare the ratio of the likelihood
of the 4 PS model and the 3 PS model to create this test statistic. From Wilks’ Theorem [3] this test
statistic will be distributed as a 𝜒2 with degrees of freedom (DoF) equal to the number of additional
parameters. For the PS adding phase, we have 4 new parameters for each additional PS model so
we use a threshold of a minimum of 25 TS to accept the new PS model into our model of the region.
This roughly corresponds to a significance threshold of 3.9 sigma due to the number of DoF. Once
the PS adding phase terminates based on the TS threshold we will move on to the Extension Test
portion of the MSF algorithm.
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1.2 Extension Test and Distance Cut

For each PS model, we now will test to see if an extended Symmetric Gaussian with an extension
parameter will fit the data better. For each model, we find a source TS by holding the other sources
fixed and treating them as the background model. Then beginning with the source with the highest
source TS we substitute the PS model with the extended model and fit the location, extension, and
spectral parameters of the newly extended source while also allowing the spectral parameters of
the other sources in the model to be fit. This results in one additional parameter in total and as
such the square root of the TS corresponds to the significance level. So to maintain a consistent
significance threshold between the PS adding phase and the alternate model hypothesis we set the
TS threshold at 16 to accept the extended model over the simpler PS model. If the extended source
assumption is accepted we then again evaluate the source TS of all the source models in the model
and remove any sources which fall below the 25 TS threshold. If a source is dropped within 0.5◦ of
another source that remains in the model we refit the model with the location and morphology (in
the case of extended source models) of any sources near the dropped sources free. This may iterate
several times if the morphology changes drastically between refits. Once the model is stable and no
sources are dropped we move on to the next most significant source remaining in the model. For
most regions, many of the PS models added in the PS adding phase will not "survive" the extension
test phase and a much more simple (in terms of the number of parameters) model of the region
that still explains much of the emission moves on. After the Extension Test is performed on all
sources in the model a final "cut" based on the minimum distance (0.3◦) between sources is applied
to remove possible aberrations in the data near extremely bright sources like the Crab Nebula. So
far this cut has only influenced the Crab Nebula region and is not expected to influence any other
regions tested. Once the distance cut is finished we move on to the spectral curvature test.

1.3 Curvature Test

Once the simplified model of the region using PS and Extended models is finished we then
test if a curved spectral assumption is more favored for each source. In the exact same way as the
Extension Test, we test each source moving from most significant to least significant and substitute
the simple power law assumption with a log parabola spectral assumption. The addition of the beta
parameter allows for the spectrum to curve downwards at higher energies as we expect the higher
energy emission to have a softer spectrum for sources especially pulsars and pulsar wind nebulae.

𝑆𝑖𝑚𝑝𝑙𝑒𝑃𝑜𝑤𝑒𝑟𝐿𝑎𝑤 = 𝑁0

(
𝐸

𝐸0

)−Γ
𝐿𝑜𝑔𝑃𝑎𝑟𝑎𝑏𝑜𝑙𝑎 = 𝑁0

(
𝐸

𝐸0

)−𝛼+𝛽 log
(
𝐸
𝐸0

)

1.4 Final Refit

The final step of the MSF algorithm is aptly named the final refit and consists of freeing all the
location, morphology, and spectral parameters of the models still remaining in the best-fit model
and doing a final fit. This allows for sources that may not have been accepted as Extended, Curved,
or otherwise had their location freed throughout the fitting process to "settle" into their true best fit.
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This also allows extended sources that were chosen early on in the process to adapt to any major
changes that occurred close enough to influence their best-fit location but did not trigger a refit for
any number of reasons. This step is crucial in highly complex regions and also assists in getting the
best source TS calculations for when the full source list will be compiled.

2. Regions Tested

Figure 1: View of a portion of the galactic plane in HAWC data from 35◦ to 85◦ and ±7.5◦ off the plane

Figure 2: View of a portion of the galactic plane in HAWC data from 0◦ to 50◦ and ±7.5◦ off the plane

Two regions will be shown during the presentation. One of these is the Crab Nebula shown in
Fig 3 and its immediate surroundings. This region was chosen for several reasons including the fact
that it is a standard candle for many 𝛾-ray observatories including HAWC, the extensive dedicated
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Figure 3: View of the Crab Nebula and surrounding region from 78◦ to 90◦ RA and 16◦ to 28◦ Declination

analyses done over the years in HAWC data [4] and [5], and the relative isolation from the diffuse
emission near the galactic plane. Results from the fit will be shown. The second region studied as
a benchmark was the Cygnus Cocoon region which can be seen near 80◦ in Fig 1. This was chosen
for several reasons such as the complexity of the region which caused previous catalog methods
to miss source components, the presence of mild diffuse background emission in the region, and
the fact that a recent dedicated analysis of the region provides good results to compare with [6].
This fit will also be shown on the poster. While the region in Fig 1 is much less complicated and
overlapping than Fig 2 we hope that the method will perform equally well at disentangling soures
in the region and provide much better results than the previously used methods.
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