MAGIC Upper Limits on the VHE emission from Flat Spectrum Radio Quasars

Habib Ahammad Mondal, Pawel Gliwny, Giacomo Principe, Francesco Longo, Natalia Żywucka-Hejzner, Elina Lindfors, Pratik Majumdar and Julian Sitarek for the MAGIC collaboration and the Fermi-LAT collaboration

Blazars are a class of active galactic nuclei (AGN) where the relativistic jet is pointed towards the observer. They are powerful sources of non-thermal radiation from radio to very high energy (VHE, E>100 GeV) gamma-rays. Flat Spectrum Radio Quasars (FSRQs) are a subclass of blazars where there are absorption or emission lines present in the optical spectra. The observed properties of FSRQs are strongly affected by the magnetic field in the accretion disk which changes the UV emission of Broad Line Region (BLR) and infra-red emission from the Dusty Torus. While many (774 as reported in 4FGL-DR2 catalogue [1]) FSRQs have been detected at high energies (HE; E>100 MeV), only a few (9 as of now) could be detected at VHE. In this contribution, we present observations of nine FSRQs performed by Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes between 2008 and 2020 with a total observation time of 174 hours. We also include a few observations from the Fermi-LAT, Swift-UVOT, Swift-XRT and optical observations from Kungliga Vetenskapsakademien (KVA) for two sources CTA 102 and B2 2234+28. We also modelled the broad band emission of the sources to look for signatures of absorption in the BLR region and hence to put constraints on the location of the emission region.
1. Introduction

AGNs are among the most powerful sources in the universe. Blazars are a class of radio-loud active galactic nuclei where the jetted emission is pointed directly or making a small angle with the line of sight of the observer. Blazars are classified depending on the properties of their optical spectra [26]. BL Lacs belong to the class of blazars with weak or no absorption lines whereas FSRQs have strong emission lines in their optical spectrum. The emission of strong optical and ultra-violet lines of FSRQs are attributed to the rapidly moving gas clouds inside the gravitational potential of the central black hole. The region of gas clouds is referred to as Broad Line Region (BLR).

The typical spectral energy distribution of blazars contains two components. The peak of the low energy component lies in the optical to X-ray region, whereas the peak of the high energy component lies in the MeV to TeV region. The origin of the low energy component is attributed to the synchrotron radiation of the relativistic electrons inside the jet. The origin of the high energy component is under debate. There are two major competitive theories regarding the origin of the high energy component. In the leptonic theory, the relevant process is the inverse Compton scattering of the relativistic electrons with the synchrotron radiation (SSC, synchrotron self-compton) or with external photon fields (EC, external Compton). There are multiple hadronic models based on different scenarios. Protons can interact with soft radiation field (mostly external to the jet photon fields) and produce pions which later on decay into gammas and muons and the muons will eventually decay into electrons. However there are also hadronic models like proton synchrotron where gamma-rays are generated as synchrotron radiation of ultra-high energy protons. The SSC scenario is often used for BL Lacs whereas the EC is commonly used to explain the spectra of FSRQs [21]. The origin of the external photons can be the BLR, the dusty torus or the accretion disk.

The FSRQ are generally observed at high redshift distances. This supports the strong absorption of the γ rays by the EBL (extragalactic background light). FSRQs also show high variability at almost all wavelengths. This makes them ideal candidates for follow-up observations at VHE following high flux states at lower energy bands.

In total, nine FSRQs which have been detected in the VHE energy range so far: 3C 279 [13], 4C +21.35 [4], PKS 1510-089 [16], PKS 1441+25 [2], S30218+35 [3], TON 0599 [20], PKS 0736+017 [17], B2 1420+32 [19] and PKS 0346-27 [27]

In this contribution, we present the VHE γ-ray observation, their data analysis and the corresponding results of the nine FSRQs, namely TXS 0025+197, B2 0234+28, AO 0235+146, 4C55.17, OP 313, CTA 102, B2 2234+28A, TXS 2241+406 and 3C 454.3. We used the data collected by the MAGIC [5], Fermi-LAT [7] data simultaneous to the MAGIC observations and optical data from the KVA [25]. We also used the data from the Fermi-LAT telescope over a span of 12 years to put the results into context of the average state of these sources.
2. Observations and data analysis

2.1 MAGIC

MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs) situated at the Observatorio del Roque de los Muchachos, on the Canary Island of La Palma, Spain [5]. The energy threshold of the MAGIC telescopes is as low as 50 GeV at low zenith angles [5], making it an ideal instrument for studying the FSRQs. The data have been collected in standard trigger and SUM trigger (SUMT, a low-energy analog trigger [11] used to lower the energy threshold) settings. The analysis procedure for the SUMT is different from the standard trigger data. The sources were observed in wobble mode [14], where four symmetric positions are chosen at 0.4° offsets with respect to the camera center. This helps real-time simultaneous background estimation and improves the statistical accuracy of the signal extraction. The data were analysed using the standard MAGIC Analysis and Reconstruction Software (MARS) framework [29]. We used the method in [23] to calculate the upper limits (U. L.) with a 95% confidence level (C. L.)

2.2 Fermi-LAT

The Large Area Telescope, on board the Fermi Gamma-ray Space satellite, is a pair conversion γ-ray telescope [7]. It detects gamma-ray photons by converting them into electron-positron pairs inside the detector. It has an operational energy range from 20 MeV to over 300 GeV. Dedicated analysis was performed for each of the nine sources using 12 years of Fermi-LAT data between August 2018 and August 2020. P8R3 source class events were selected in the energy range of 100 MeV to 1 TeV. The Fermi Science Tools (version 11-07-00) based python package Fermipy [28] was used to analyze the data. A similar analysis technique was also used in [22].

2.3 KVA

Optical data were collected from the 35m Celestron telescope attached to the KVA telescope as a part of the Tuorla Blazar Monitoring Program [25]. The monitoring program which was launched in the year 2002 was originally meant for observing TeV candidate BL Lac objects from [10]. However, throughout the years the monitoring sample kept on increasing gradually. The monitoring observations were generally performed twice a week. But, most of the sources in our current work are not part of the main sample. Hence the size sample of the observations is poorer in some cases. Cousins R-filter is used during the said observations.

2.4 Swift-UVOT and Swift-XRT

The Neil Gehrels Swift Observatory [15], launched in 2004 by the National Aeronautics and Space Administration is a space telescope. It is equipped with the following three telescopes: Ultraviolet and Optical Telescope (UVOT; [24]), the Burst Alert Telescope (BAT; [8]), and the X-ray Telescope (XRT; [9]). The observatory collects data in the optical, UV and X-ray energy range. In this work we performed the spectral analysis using Swift data from simultaneous MAGIC observational time windows.
Table 1: Fermi-LAT FSRQ properties from the 4FGL catalog [1] and Fermi-LAT integral flux during MAGIC observations.

<table>
<thead>
<tr>
<th>Association Name</th>
<th>4FGL Source Name</th>
<th>redshift</th>
<th>R.A. [deg]</th>
<th>decl. [deg]</th>
<th>Integral flux (0.1-1000 GeV)</th>
<th>variability index</th>
<th>Integral flux during MAGIC obs. (0.1-1000 GeV)</th>
<th>10^{-3} cm^{-2} s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXS 0025+197</td>
<td>J0028.4+2001</td>
<td>1.552</td>
<td>7.12</td>
<td>20.05</td>
<td>1.2 ± 0.2</td>
<td>27.66</td>
<td>63.4 ± 7.8</td>
<td>10^{-3} cm^{-2} s^{-1}</td>
</tr>
<tr>
<td>B2 0334+28</td>
<td>J0337.4+2848</td>
<td>1.206</td>
<td>39.46</td>
<td>28.90</td>
<td>16.7 ± 0.4</td>
<td>3219.99</td>
<td>80.3 ± 4.2</td>
<td>10^{-3} cm^{-2} s^{-1}</td>
</tr>
<tr>
<td>AO 0255+164</td>
<td>J0238.6+1637</td>
<td>0.94</td>
<td>39.67</td>
<td>16.62</td>
<td>13.1 ± 0.5</td>
<td>65.33</td>
<td>20.1 ± 5.1</td>
<td>10^{-3} cm^{-2} s^{-1}</td>
</tr>
<tr>
<td>4C +55.17</td>
<td>J0957.6+5523</td>
<td>0.902</td>
<td>149.42</td>
<td>55.38</td>
<td>8.5 ± 0.3</td>
<td>32.58</td>
<td>7.3 ± 1.0</td>
<td>10^{-3} cm^{-2} s^{-1}</td>
</tr>
<tr>
<td>OP 313</td>
<td>J3130.5+3221</td>
<td>0.99</td>
<td>197.65</td>
<td>32.35</td>
<td>3.7 ± 0.6</td>
<td>170.41</td>
<td>9.0 ± 5.1</td>
<td>10^{-3} cm^{-2} s^{-1}</td>
</tr>
<tr>
<td>CTA 102</td>
<td>J2232.6+1143</td>
<td>1.07</td>
<td>338.30</td>
<td>11.73</td>
<td>41.6 ± 0.6</td>
<td>14315.21</td>
<td>1030.0 ± 20.0</td>
<td>10^{-3} cm^{-2} s^{-1}</td>
</tr>
<tr>
<td>B2 2234+28A</td>
<td>J2236.3+2828</td>
<td>0.790</td>
<td>339.08</td>
<td>28.45</td>
<td>6.6 ± 0.3</td>
<td>387.65</td>
<td>16.9 ± 4.8</td>
<td>10^{-3} cm^{-2} s^{-1}</td>
</tr>
<tr>
<td>TXS 2241+406</td>
<td>J2244.2+4057</td>
<td>1.17</td>
<td>341.60</td>
<td>40.95</td>
<td>6.3 ± 0.4</td>
<td>3929.90</td>
<td>19 ± 1.7</td>
<td>10^{-3} cm^{-2} s^{-1}</td>
</tr>
<tr>
<td>3C 454.3</td>
<td>J2253.9+1609</td>
<td>0.859</td>
<td>343.49</td>
<td>16.15</td>
<td>215.0 ± 1.0</td>
<td>56005.23</td>
<td>260 ± 8.0</td>
<td>10^{-3} cm^{-2} s^{-1}</td>
</tr>
</tbody>
</table>

Table 2: Information on data collection by the MAGIC telescopes.

<table>
<thead>
<tr>
<th>Association Name</th>
<th>Exposure [h]</th>
<th>Zenith [°]</th>
<th>MJDs-50000</th>
<th>Significance of excess</th>
<th>U.L. (E > 100 GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXS 0025+197</td>
<td>5.0</td>
<td>9 to 35</td>
<td>8728 to 8730; 8816 to 8818</td>
<td>0.18</td>
<td>3.07</td>
</tr>
<tr>
<td>B2 0334+28</td>
<td>25.6</td>
<td>0 to 36</td>
<td>8379 to 8481</td>
<td>1.63</td>
<td>1.34</td>
</tr>
<tr>
<td>AO 0255+164</td>
<td>6.1</td>
<td>11 to 26</td>
<td>7385 to 7398</td>
<td>0.69</td>
<td>1.82</td>
</tr>
<tr>
<td>CTA 102</td>
<td>3.2</td>
<td>17 to 42</td>
<td>7715 to 7748; 8105</td>
<td>1.7</td>
<td>5.96</td>
</tr>
<tr>
<td>OP 313</td>
<td>13.6</td>
<td>4 to 39</td>
<td>6774 to 6811; 8654 to 8657; 8444 to 8448</td>
<td>-0.5</td>
<td>2.01</td>
</tr>
<tr>
<td>4C +55.17</td>
<td>50.0</td>
<td>26 to 42</td>
<td>5512 to 5576; 6671 to 6777</td>
<td>1.5</td>
<td>1.12</td>
</tr>
<tr>
<td>3C 454.3</td>
<td>34.6</td>
<td>12 to 48</td>
<td>5505 to 5509; 6815 to 6818</td>
<td>0.6</td>
<td>1.71</td>
</tr>
<tr>
<td>TXS 2241+406</td>
<td>29.5</td>
<td>22 to 35</td>
<td>7994; 8665; 8703; 8766; 8805 to 8845</td>
<td>0.18</td>
<td>3.07</td>
</tr>
<tr>
<td>B2 2234+28A</td>
<td>6.7</td>
<td>1 to 47</td>
<td>8639 to 8677</td>
<td>0.55</td>
<td>3.05</td>
</tr>
</tbody>
</table>

The standard xrtpipeline procedure (version 0.13.7) was used while carrying out the X-ray data reduction and calibration. Spectral fitting was performed using XSPEC (version 12.8.2) [6] in the energy range of 0.2–10 keV and was fitted with a power-law model.

2.5 Sources

Our current work focuses on the FSRQ sources observed by MAGIC but have not resulted in a VHE γ-ray detection. Most of the sources were observed as target of opportunity (ToO) by MAGIC following the trigger of other MWL observatories. The details of the observed sources are listed in Table 1. Table 2 provides the following information about sources referring to MAGIC observations and analysis: observation time (exposure time), zenith angle range of observation, MJD range (dates of observations), the excess signal calculated using the prescription from [18], and the obtained integral upper limits.

2.6 Results

Table 2 reports the results from the observations and analysis of the nine FSRQ sources. We could not find any statistically significant (> 5σ excess) signal from any of the sources in the sample. The differential U.L.s were calculated in 5 energy bins using MAGIC data in the energy range from 50 GeV to 500 GeV. We assumed the intrinsic spectral index of the γ-ray photon distribution to be α=2.2 for all of sources. The expected VHE flux for each FSRQ is calculated by extrapolation of the Fermi-LAT data into the VHE range. We also considered the absorption of γ rays by the EBL using the model used in [12].

In Fig. 1 we show the multiwavelength light curve from 3C 454.3, one of the sources from the sample. The green vertical lines show the days during the MAGIC observations.

In Fig. 2 we present the Spectral Energy Distribution of the source 3C 454.3. The U.L. points are close and consistent with the log-parabola model extended from *Fermi*-LAT energy range and with EBL correction.

3. Discussion and conclusions

In our current work we present an archive of U.L.s for nine FSRQs with high redshift distances. We also present other MWL results from observations done in radio, X-ray and HE gamma-rays. These sources were observed by MAGIC telescopes over a decade of time. Most of the observations were carried out following triggers by other multiwavelength observatories in the ToO observations framework of the MAGIC collaboration. For most of the sources the MAGIC U.L. points lay above the log-parabola model extended from the *Fermi*-LAT energy range into the VHE range and with EBL correction.

The lack of detection of significant emission in the VHE range may be due to the short observation time of the MAGIC telescopes when the observations were carried out in the high GeV states of the sources. It may also be due to the fact that there exists a certain delay between the emission enhancement triggering the ToO and the time when observations are started with MAGIC. Additionally, observations and collection of good quality data are also constrained by atmospheric conditions or moonlight.
Figure 2: SED in GeV and VHE range for the source 3C 454.3: derived VHE differential upper limits (95\% C.L.) on the flux by MAGIC and Fermi-LAT spectrum obtained during the MAGIC observation period.

Acknowledgements

GP acknowledges support by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU.

HAM greatly acknowledges the Department of Atomic Energy, Government of India for the necessary funding; the Homi Bhabha National Institute and the Saha Institute of Nuclear Physics for the excellent computing cluster facility at the institute.

On behalf of the MAGIC Collaboration, we would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF, MPG and HGF; the Italian INFN and INAF; the Swiss National Fund SNF; the ERDF under the Spanish Ministerio de Ciencia e Innovación (MICINN) (PID2019-104114RB-C31, PID2019-104114RB-C32, PID2019-104114RB-C33, PID2019-05510GB-C31, PID2019-107847RB-C41, PID2019-107847RB-C42, PID2019-107847RB-C44, PID2019-107988GB-C22); the Indian Department of Atomic Energy; the Japanese ICRR, the University of Tokyo, JSPS, and MEXT; the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-400/18.12.2020 and the Academy of Finland grant nr. 320045 is gratefully acknowledged.

The Fermi LAT Collaboration acknowledges generous ongoing support from a number of
agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat à l’Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucléaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K. A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d’Etudes Spatiales in France. This work is performed in part under DOE Contract DE-AC02-76SF00515.

References

[27] Wagner S., Rani B., H. E. S. S. Collaboration, 2021, ATel, 15020

Full Authors List: MAGIC Collaboration

1 Japanese MAGIC Group: Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa, 277-8582 Chiba, Japan
2 ETH Zurich, CH-8093 Zurich, Switzerland
3 Instituto de Astrofísica de Canarias and Dpto. de Astrofísica, Universidad de La Laguna, E-38200, La Laguna, Tenerife, Spain
4 Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008, Granada, Spain
5 National Institute for Astrophysics (INAF), I-00136 Rome, Italy
6 Università di Udine and INFN Trieste, I-33100 Udine, Italy
7 Max-Planck-Institut für Physik, D-80805 München, Germany
8 Università di Padova and INFN, I-35131 Padova, Italy
9 Instituto de Física de Altas Energías (IFAE), The Barcelona Institute of Science and Technology (BIST), E-08193 Bellaterra (Barcelona), Spain
10 Technische Universität Dortmund, D-44221 Dortmund, Germany
11 Croatian MAGIC Group: University of Zagreb, Faculty of Electrical Engineering and Computing (FER), 10000 Zagreb, Croatia
12 IPARCOS Institute and EMFTEL Department, Universidad Complutense de Madrid, E-28040 Madrid, Spain
13 Centro Brasileiro de Pesquisas Físicas (CBPF), 22290-180 URCA, Rio de Janeiro (RJ), Brazil
14 University of Lodz, Faculty of Physics and Applied Informatics, Department of Astrophysics, 90-236 Lodz, Poland
15 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain
16 Departamento de Física, and CERES-IIEC, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
17 Università di Pisa and INFN Pisa, I-56126 Pisa, Italy
18 Università di Bologna, ICCUB, IIEC-UB, E-08028 Barcelona, Spain
19 Armenian MAGIC Group: A. Alikhanyan National Science Laboratory, 0036 Yerevan, Armenia
20 Department for Physics and Technology, University of Bergen, Norway
21 INFN MAGIC Group: INFN Sezione di Catania and Dipartimento di Fisica e Astronomia, University of Catania, I-95123 Catania, Italy
22 INFN MAGIC Group: INFN Sezione di Torino and Università degli Studi di Torino, I-10125 Torino, Italy
23 INFN MAGIC Group: INFN Sezione di Bari and Dipartimento Interateneo di Fisica dell’Università e del Politecnico di Bari, I-70125 Bari, Italy
24 Croatian MAGIC Group: University of Rijeka, Faculty of Physics, 51000 Rijeka, Croatia
25 Universität Würzburg, D-97074 Würzburg, Germany
26 University of Geneva, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland
27 Japanese MAGIC Group: Physics Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 337-8296 Hiroshima, Japan
28 Deutsches Elektronen-Synchrotron (DESY), D-15738 Zeuthen, Germany
FSRQ upper limits by MAGIC

Habib Ahammad Mondal

29 Armenian MAGIC Group: ICRANet-Armenia, 0019 Yerevan, Armenia
30 Croatian MAGIC Group: University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), 21000 Split, Croatia
31 Croatian MAGIC Group: Josip Juraj Strossmayer University of Osijek, Department of Physics, 31000 Osijek, Croatia
32 Finnish MAGIC Group: Finnish Centre for Astronomy with ESO, University of Turku, FI-20014 Turku, Finland
33 Japanese MAGIC Group: Department of Physics, Tokai University, Hiratsuka, 259-1292 Kanagawa, Japan
34 Università di Siena and INFN Pisa, I-53100 Siena, Italy
35 Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata 700064, West Bengal, India
36 Inst. for Nucl. Research and Nucl. Energy, Bulgarian Academy of Sciences, BG-1784 Sofia, Bulgaria
37 Japanese MAGIC Group: Department of Physics, Yamagata University, Yamagata 990-8560, Japan
38 Finnish MAGIC Group: Space Physics and Astronomy Research Unit, University of Oulu, FI-90014 Oulu, Finland
39 Japanese MAGIC Group: Chiba University, ICEHAP, 263-8522 Chiba, Japan
40 Japanese MAGIC Group: Department of Physics, Kyoto University, 606-8502 Kyoto, Japan
41 Croatian MAGIC Group: Ruđer Bošković Institute, 10000 Zagreb, Croatia
42 Croatian MAGIC Group: INFN Sezione di Perugia, I-06123 Perugia, Italy
43 INFN MAGIC Group: INFN Roma Tor Vergata, I-00133 Roma, Italy
44 INFN MAGIC Group: INFN Roma Tor Vergata, I-00133 Roma, Italy
45 Japanese MAGIC Group: Department of Physics, Konan University, Kobe, Hyogo 658-8501, Japan
46 also at International Center for Relativistic Astrophysics (ICRA), Rome, Italy
47 now at Institute for Astro- and Particle Physics, University of Innsbruck, A-6020 Innsbruck, Austria
48 also at Port d’Informació Científica (PIC), E-08193 Bellaterra (Barcelona), Spain
49 also at Institute for Astro- and Particle Physics, University of Innsbruck, A-6020 Innsbruck, Austria
50 also at Department of Physics, University of Oslo, Norway
51 also at Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
52 Max-Planck-Institut für Physik, D-80805 München, Germany
53 also at INFN Padova
54 Japanese MAGIC Group: Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa, 277-8582 Chiba, Japan