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VERITAS (Very Energetic Radiation Imaging Telescope Array System) is the current-generation
array comprising four 12-meter optical ground-based Imaging Atmospheric Cherenkov Telescopes
(IACTs). Its primary goal is to indirectly observe gamma-ray emissions from the most violent
astrophysical sources in the universe. Recent advancements in Machine Learning (ML) have
sparked interest in utilizing neural networks (NNs) to directly infer properties from IACT images.
However, the current training data for these NNs is generated through computationally expensive
Monte Carlo (MC) simulation methods. This study presents a simulation method that employs
conditional Generative Adversarial Networks (cGANs) to synthesize additional VERITAS data
to facilitate training future NNs. In this test-of-concept study, we condition the GANs on five
classes of simulated camera images consisting of circular muon showers and gamma-ray shower
images in the first, second, third, and fourth quadrants of the camera. Our results demonstrate
that by casting training data as time series, cGANs can 1) replicate shower morphologies based
on the input class vectors and 2) generalize additional signals through interpolation in both the
class and latent spaces. Leveraging GPUs strength, our method can synthesize novel signals at an
impressive speed, generating over 106 shower events in less than a minute.
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1. Introduction

VERITAS is a ground-based gamma-ray instrument located at the Fred Lawrence Whipple
Observatory in Arizona [1]. Consisting of four IACTs, VERITAS is designed to image brief faint
Cherenkov airshowers induced by gamma rays and hadronic cosmic rays. The ambitious next
generation of IACTs, the Cherenkov Telescope Array (CTA) [2] is currently under development.
With more advanced instrumentation such as larger mirrors, more sensitive photosensors and
upgraded electronics, CTA is expected to improve the current sensitivity by an order of magnitude.
There has been an increasing interest in going beyond the classical analysis method employed by
the current-generation IACTs toward the state-of-the-art methods based on neural networks (NNs)
to reconstruct the properties of each gamma-ray event directly from the telescope images [3].
However, despite the advancements in both hardware and software, an important component in
the technique remains largely unchanged: the production of simulated data sets. IACTs’ Monte
Carlo (MC) simulation method relies on the use of the CORSIKA software [4] to simulate the
particle physics of the Extensive Air Showers (EAS) and the Cherenkov light they produce. THe
physics-based simulation for IACT involves simulating the first interaction between the gamma ray
and the atmosphere, as well as the ray tracing of the Cherenkov photons through the telescopes’
optics. As each EAS cascade can produce more than ten thousand Cherenkov photons, the process
is a computationally demanding endeavor.

We demonstrate in this work the feasibility of using a generative machine learning technique
called conditional Generative Adversarial Networks (cGANs) to rapidly generate gamma and muon
signals for the VERITAS telescopes. cGANs can learn the statistical distribution underlying the
training data set, and subsequently generates new images that morphologically resemble the training
set. Although the learning process can take several hours, synthesizing new images with cGANs
is significantly faster than the traditional physics-based simulation method: the "learned model" is
encoded by the ML algorithm as a large matrix; producing new data is thus simply equivalent to a
physics-agnostic matrix multiplication process using dedicated GPUs.

2. Conditional GANs

GANs [5] are a popular framework of generative ML designed to generate images. Each GANs
consists of two competing NNs: a Generator and a Discriminator. The Generator is a neural network
that takes a random vector z from the distribution 𝑝(𝑧) ∼ N (0, 1) as input and tries to map it to an
output similar to the training data. The Discriminator is a classifier that tries to classify whether its
inputs come from training data or not. The Generator and Discriminator are trained together in an
adversarial game until equilibrium is established.

It is well known that GANs are particularly difficult to train. Mode collapse is a commonly
encountered problem, occurring when the Generator repeatedly produces a plausible output, and the
Discriminator only learns to always reject that plausible output over and over again. To gain more
direct control over what GANs should generate, a variant of GANs called conditional Generative
Adversarial Networks (cGANs) [6] was invented, feeding a label vector c into both the Generator
and Discriminator. For example, c = [1 0 0 0 0] represents the label for muon showers, c = [0 1 0 0
0] is associated with gamma-ray showers having a particular feature, and so on.
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3. Setup and training

3.1 Data

Our training data set is generated using the open source ctapipe software [7]. It is a python-
based software capable of synthesizing shower-like images with VERITAS’ (and several other
IACTs’) camera geometry, displaying camera images of these showers, and fitting shower parameters
such as Hillas moments (for gamma-ray) or radius and center (for muon). For the training data set
used in this work, we generate five separated classes: muon shower and gamma-ray shower images
in the first, second, third, and fourth quadrants of the camera. Their class labels are [1 0 0 0 0], [0
1 0 0 0], [0 0 1 0 0], [0 0 0 1 0], [0 0 0 0 1], respectively. Each class consists of 20,000 showers.

Unlike the conventional image-based method, here we work directly at the camera pixel level.
In other words, each shower image is cast as a time series with time represented by the pixel
index i and intensity scaled with the number of photonelectrons detected by the 𝑖𝑡ℎ photosensor.
The image-based camera view representation will be used for visual inspection and fitting shower
parameters, while the time series representation will be used for cGANs data input/output. See
Fig.1 for further explanation.

[1 0 0 0 0]

[0 1 0 0 0]

[1 0 0 0 0]

[0 1 0 0 0]

Figure 1: Two different representations of our data. Left: camera view representation reflecting the
airshower physics. It is used for visual inspection and shower parameters fitting. Middle: VERITAS’s
pixel numbering scheme, which follows a concentric hexagonal pattern starting from the central pixel and
expanding radially after each revolution. Right: time series representation, used as the Generator’s output
and the Discriminator’s input. The pixel numbering scheme allows us to convert one representation into the
other.

We choose the abstract time series representation during training for several practical reasons.
Firstly, since VERITAS’ 499 cylindrical PMT photosensors are arranged in a hexagonal grid, the
coordinate transformation of the image into a Cartesian grid will introduce a conversion bias.
Secondly, in order to achieve a reasonable image resolution, the required number of square pixels
per one hexagonal tile should be greater than one. This leads to an increase in data volume, hence
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longer training time. Thirdly, even more pixels are required to pad the corners to make a square
image. Finally, the time series representation offers a natural pathway to include the label (class)
vectors into the training data, since the label vectors described earlier can also be viewed as time
series.

3.2 NNs architecture and training

For training and synthesizing new GANs data, we use the TensorFlow machine learning python
platform [8]. Before training, we normalize the training data so that the range of the input is in the
interval [0,1]. Our Discriminator consists of several fully-connected layers of feedforward neural
network to gradually downsample the concatenated (499+5)-D input vector to 512 → 256 → 128 →
64 → 32 → 1 output. We also include a layer of Dropout and LeakyReLU after each downsampling
layer to prevent overfitting and add a degree of non-linearity to the Discriminator. Similarly, after
the concatenation layer to merge the latent and class vectors, our Generator consists of multiple
layers that upsample the combined (100+5)-D latent and class vector inputs to 128 → 256 → 512
→ 1024 → 499 dimensional output. We add a layer of BatchNorm to stabilize the training and
LeakyReLU for non-linearity after each upsampling step. Overall, the Generator has 1,218,803
trainable parameters, and the Discriminator has 433,153 trainable parameters.

Figure 2: Loss plot during training. Notice how the Discriminator’s accuracy score settles around 50% for
real (training) and 50% for fake (synthesized) data.

In terms of hardware specifications, we performed our training on an M1 Ultra Mac Studio
with a configuration of 20-core CPU, 48-core GPU, and 64 GB of unified memory shared between
CPU and GPU. With a batch size of 512, it took approximately 10 minutes to go through 20 epochs
of training. At the end of every 20 epochs, the program saved the Generator and Discriminator
models as .h5 files so that we could subsequently evaluate their outputs. Their file volumes are 4.9
and 5.3 MB, respectively. Currently, there is no notion of a definitive stopping epoch, so we monitor
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the loss plot (Fig.2) and visually inspect the Generator’s outputs to determine when training should
be stopped.

4. Results

4.1 Known class reproduction

Fig.3 shows an example of Generator’s output at epoch 240. The plot shows a wide variety of
signals within each class (column), demonstrating that we have successfully avoided mode collapse
and generated new signals. Between the classes, the morphologies of signals differ significantly
from each other, indicating that the model has learned to associate a typical morphology with a
particular label vector.

Figure 3: Random cGANs’ generated airshowers associated with their class vectors. The zeroth column
consists of circular muon showers, first column consists of showers contained in the first quadrant of the
camera, etc.

To benchmark how similar the Generator’s synthesized data are to the training data set, we
ask the Generator to synthesize a population of 20,000 showers for each class, use ctapipe to
fit basic parameters from the camera images, and compare the distributions of the parameters
with the training data set. The results for class 0 and 1 are shown in Fig.4. Class 0 (muon) has
similar distributions between training and GAN-synthesized data, except for edge cases where there
are insufficient training data. Class 1 (gamma rays in the first quadrant) shows similar means and
standard deviations for the center and angle distributions, but there is a notable systematic difference
in the width and length distributions. This could be because either the training data set was not
sufficient, bias in fitting methods, or poor network architecture.
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Figure 4: Benchmarking cGANs’ outputs with our original training data. Left: Camera view of muon and
gamma-ray showers and the masks used for fitting shower parameters. Right: Parameter distributions for
muon (center coordinates and radius) and gamma (center coordinates, angle of the major axis with respect
to the x-axis, length, and width).

4.2 Interpolation of class and latent space vectors

To probe how the Generator interprets the input vectors, we perform two experiments. In the
first experiment, we interpolate between two points in the class space while keeping the latent vector
fixed. In the second experiment, we choose a fixed class vector, select two randomly generated
latent vectors and linearly interpolate the steps between them. An example is shown in Fig.5

Figure 5: Differences between class and vector space interpolation. Top: Physical interpretation when we
perform a linear walk from class 1 to class 2 while remaining stationary in the latent space. Bottom: Physical
interpretation when we perform a linear walk between two random points in the latent space while keeping
the class vector fixed.

With the first walk in class space, our cGANs could not have known about the existence of
intermediate vectors between two class spaces: during training, every class vector label consists of
only 0s and 1 entries. Therefore, it is apparent that as we move toward the midpoint between the
two classes, the two middle columns show non-physical results. The latent space walk, however,
is different. Since we have sampled many latent vectors from the latent space during training, our
cGANs would have known about the existence of intermediate vectors populating this space. As
such, the transition appears to be smoother and more physically plausible.
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5. Discussion

Figure 6: Position and index of the first 100 pixels from some of the current and next-generation IACT
cameras.

We highlight the interesting discovery that cGANs managed to learn the underlying statistical
distribution of the time series training data. Recall that we have provided an implicit projection
by going from the 2D camera view representation into the 1D time series representation; such
mapping between the two representations is definitely non-trivial. Therefore it is surprising that our
Generator can produce consistent signals with complex morphologies such as circular muon rings
without relying on this mapping.

Furthermore, we note that VERITAS’s pixel arrangement is not unique among Cherenkov
telescopes: newer-generation telescopes such as the prototype SCT (pSCT) employ square SiPMs
arranged in a Cartesian grid. We have also performed further experiments on some types of IACT
camera geometry shown in Fig.6, and preliminary results suggest the general applicability of the
method. Therefore, we conjecture that cGANs can reproduce consistent airshower images for any
IACT camera regardless of the arbitrary “hidden” pixel mapping, and encourage further exploration
on the topic.

Finally, the relatively small file size of the Generator’s model offers two potential applications.
It can be employed as a data compression scheme and a data expansion tool. After abstracting the
training data into an NN-based model consisting of a few million parameters, one can potentially
generate on the fly as much data as needed from any local machine using only TensorFlow. Another
possibility is just-in-time simulation, which eliminates the need to store and transfer a large corpus
of data across multiple geographical locations, freeing up computing overheads. In our setup,
the trained Generator manages to generate 106 showers in ∼70 seconds using a single terminal.
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However, the machine is also capable of running four such processes in parallel at a reduced speed,
i.e. approximately 90 seconds per 106 showers. In other words, more than a million showers can
be generated in under a minute.

6. Conclusion

This work demonstrates the successful avoidance of mode collapse by our cGANs and the
generation of a novel set of VERITAS data. The majority of the generated events exhibit mor-
phological similarities to those generated using the Monte Carlo method. Additionally, the speed
of event generation using cGANs is unprecedented. We anticipate further enhancements in the
accuracy of the outputs as we continue to fine-tune our experimental setup and NN architecture.
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