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Using the data from the Large Area Telescope (LAT), the Fermi-LAT collaboration continuously
updates their catalogs, which now contain a few thousands of detected gamma-ray sources.
Among them, around one third are of not yet identified origin, and they could contain signals
from established source types or, most intriguing, new source types such as dark matter subhalos
producing gamma-rays from dark matter self-annihilation. We apply state-of-the-art machine
learningmethods for classification to the sources in Fermi-LAT catalogswith the aim of identifying
possible candidates of exotic gamma-ray sources, namely dark matter subhalos. We first simulate
the properties of dark matter subhalo gamma-ray sources by using established models from both
N-body simulations and semi-analytical approaches for the subhalo distribution. We then carefully
assess the detectability of this sample by using Fermi-LAT simulations. We discuss results of
our machine learning analysis performed on the unidentified sources in the 4FGL-DR3, and
present conservative limits on the dark matter annihilation cross-section from the exclusion of the
unidentified sources classified as astrophysical-like by our networks.
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1. Introduction
The Fermi Large Area Telescope (Fermi-LAT) has detected over six thousand γ-ray point

sources, collected in incremental catalogs [1]. Most sources in Fermi-LAT catalogs are blazars and
pulsars. However, more than two thousand sources in the most recent 4FGL-DR3 catalog remain
without clear identification or counterparts at otherwavelengths. Some of these unidentified (UNID)
sources could potentially be attributed to exotic new sources, such as dark matter annihilation or
decay in subhalos. Cosmological simulations suggest that darkmatter structures form hierarchically.
Dark matter halos are thus expected to contain a large number of smaller substructures known as
subhalos (see e.g. [2]), among which a significant fraction are invisible at optical wavelengths
because they lack baryonic matter. However, dark matter subhalos in the Milky Way could be
detected as γ-ray point sources due to the annihilation or decay of dark matter particles into
Standard Model final states. Signatures of dark subhalo populations have been searched for within
individual γ-ray sources in Fermi-LAT catalogs [3–6]. Subhalos are expected to appear in Fermi-
LAT surveys as steady sources of γ rays, predominantly point-like with possibly few extended
nearby representatives [7]. Furthermore, subhalos should have no counterpart emission at other
wavelengths, and their γ-ray emission is expected to be signal dominated, with little background
from other astrophysical mechanisms. Machine learning classifiers have been used in recent years
as useful tool for γ-ray source classification, both to study UNID sources as well as to search for
potential dark subhalos [8–14]. However, all previous results on dark subhalos were based on
machine learning classifiers that were not trained on realistic subhalo simulations, but only using
their expected similarities to observed astrophysical sources.

This contribution is based onRef. [15], inwhichwe extends previousworks in several directions.
Our novelties can be summarized as follows: (i) We train our networks on realistic dark matter
subhalo simulations, taking into account the specific spectral properties produced by different dark
matter masses. (ii) We base the classification on the measured flux as a function of energy, instead
of using derived features, i.e. we use the full information contained in the measured energy spectra.
(iii) We use Bayesian neural networks, which allow us to account for uncertainties in the network
weights and make robust predictions about subhalo-like sources.

2. Models & methods
2.1 Dark matter modeling

Subhalos are structures predominantly composed of dark matter. If dark matter particles are
weakly interactingmassive particles (WIMPs) that can self-annihilate into StandardModel particles,
then individual subhalos could shine as sources of emission in the sky, potentially offering a signal
for dark matter. According to the WIMP paradigm, natural dark matter candidates with masses in
the GeV-TeV range could produce γ rays through annihilation into hadronic or leptonic final states.
The differential γ-ray flux, φγ, from the annihilation of (Majorana) WIMP particles from a dark
matter subhalo is computed as:

φγ :=
dΦγ
dE
(E,∆Ω) =

〈σv〉

8πm2
DM
J(∆Ω)

dN i
γ

dE
(E) , (1)

where mDM is the dark matter mass, 〈σv〉 is the thermally averaged annihilation cross section, J
is the so-called J -factor, which is the integral along the line of sight of the subhalo dark matter
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density over the solid angle ∆Ω, and dN i
γ(E)/dE is the energy spectrum of γ rays produced by dark

matter annihilation in a given annihilation channel i.
We model the dark matter subhalo population using the CLUMPY [16] code based on dark

matter-only cosmological simulations [17, 18]. We compute the J -factor for each subhalo by
integrating the square of the dark matter density, and treat each subhalo as a point-like source by
setting the integration angle θint = 0.5 deg. We only consider subhalos with Jsub(< 0.5 deg) values
greater than 1017 GeV2cm−5 [18].

We calculate the expected flux of γ rays in the Fermi-LAT energy range for each subhalo using
different dark matter spectral models. We focus on the hadronic annihilation channel bb̄ with a
branching ratio of one. This channel produces energy spectra similar to those of other astrophysical
sources, such as pulsars, and represents the most challenging setup for our machine learning
classifiers. We use the γ-ray energy spectra dN i

γ(E)/dE as provided in [19], which is represented
within the simulations illustrated below by a fit with a power law with a super-exponential cutoff.
Comparing the pulsar and dark matter spectra (see Fig.2 in Ref. [15]), we observe that their shapes
become very similar for the bb̄-channel and dark matter masses around a few tens of GeV. Following
this observation, some studies [20, 21] have used machine learning classifiers that were trained to
identify pulsars among Fermi-LAT unidentified sources to estimate the number of dark matter
subhalo candidates. However, it is important to note that the similarity between the dark matter and
pulsar spectra is limited to a specific range of dark matter masses and specific annihilation channels.
Furthermore, it is necessary to include realistic subhalo sources in the training set of the algorithms
to ensure consistency when using machine learning classifiers.

2.2 Fermi-LAT simulation
Themeasurement of γ rays fromdarkmatter subhaloswithFermi-LAT is simulated as explained

in this section. Our objectives are twofold: (1) to update the detection prospects for point-like dark
matter subhalos for the 4FGL-DR3 catalog, and (2) to produce a realistic training set for our neural
networks. To achieve these objectives, our simulation must produce the following outcomes: (i)
The number of detectable subhalos in the 4FGL-DR3 catalog as a function of the annihilation cross
section and the dark matter mass; (ii) The energy spectrum that would be detected by Fermi-LAT
for each subhalo, taking into account realistic systematic uncertainties from diffuse and point-
source backgrounds, the Fermi-LAT instrument response function, and using detection pipelines
typically employed in Fermi-LAT source analysis. Thus, we have extended our simulation strategy,
building upon previous work [5, 18], to create realistic training data. In particular we use the
latest published data, include the full information from the energy spectra and optimise the fitting
procedure to extract these spectra. By processing complete spectra, we can leverage the ability of
neural networks to extract all relevant information from low-level features. Our work thus differs
from previous studies, such as [14], which used synthetic features to search for dark matter subhalo
candidates.

We simulate 12 years of Fermi-LAT data and apply cut selections compatible with the most
recent release of the public Fermi-LAT source catalog, the 4FGL-DR3 catalog [1]. The simulations
and subsequent data analysis are performed using fermipy, a Python interface to the official analysis
tools developed by the Fermi-LAT collaboration1.

1https://fermipy.readthedocs.io/en/latest/
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Figure 1: Left: Detection significance distribution for two dark matter masses at a fixed cross-section. The
distribution of 4FGL classified and UNID sources are added for comparison. Right: Number of detectable
sources as function of the annihilation cross-section for different dark matter masses.

For each subhalo, we perform the following steps: We (i) select 12◦ × 12◦ sky patch (ROI) around
the simulated source position; (ii) include a source model fit to the γ-ray spectrum following the
respective J -factor, dark matter model, and a choice for the dark matter annihilation cross-section;
(iii) fit ROI including point sources, diffuse & isotropic background; (iv) calculate the spectral
energy distribution (SED) of each subhalo by fitting the flux normalisation of the source in each
energy bin defined by the 4FGL-DR3 catalog. At the end of our analysis chain, we obtain for
each dark matter subhalo: the detection significance (TS) over the full energy range, the detection
significance in each energy bin, and the spectral energy distribution that would be measured by
Fermi-LAT catalogs. See Sec.3 and Appendix A in Ref. [15] for technical details.

3. Results
3.1 Detectability of dark matter subhalos

To assess the detectability of dark matter subhalos, we focus on WIMP annihilation into bb̄
final states and consider a wide range of annihilation cross sections 〈σv〉 and masses mDM.

In figure 1 (left), we present the distribution of simulated γ-ray subhalos as a function of
detection significance (σd =

√
TS) for two exemplary setups, in comparison to the distributions

of both detected and unidentified (UNID) sources in the 4FGL-DR3 catalog. For the dark matter
model corresponding to mDM = 80 GeV, 40% of the original subhalo population is detectable by
Fermi-LAT. Note that the number of detectable subhalos is significantly enhanced by the large
annihilation cross section we assume for the benchmark setup. The σd-distribution for our dark
matter subhalos is similar to that of the UNID sources, with a noticeable difference at higher
significances (σd > 10). We observe that varying the dark matter mass has a strong effect on the
number and distribution of detectable subhalos for a fixed annihilation cross section. Lower masses
have a higher detection rate due to a larger overall normalisation and a peak in the annihilation
spectrum at lower energies. Our results show that the distribution of the detection significance σd

for a realistic simulation of dark matter subhalos is highly model-dependent, and that it differs from
that of 4FGL sources, considering both classified and UNID sources. It roughly approaches that
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of the 4FGL UNID sources for specific dark matter masses, a specific annihilation channel and
specific cross section values.

The number of detectable subhalos in our simulation setup decreases approximately linearly
with decreasing annihilation cross section as shown in figure 1 (right panel). This effect has been
quantified in previous work [4, 5] and is reproduced also in our setup for the 4FGL-DR3 catalog.
The number of detectable subhalos, i.e. subhalos for which σd > 5, ranges from 8 at 〈σv〉 = 10−25

cm3/s to about 103 at 〈σv〉 = 10−23 cm3/s for mDM = 80 GeV. Fewer subhalos are detected at
higher dark matter masses because the γ-ray flux decreases proportional to mDM

−2. However, the
decrease in flux is partially offset by the fact that the energy spectrum is harder and thus easier to
detect at larger dark matter masses. This is why the number of detectable sources for dark matter
masses around 1 TeV is higher than that for 300 GeV, for a given annihilation cross section. If we
look at the TS obtained by fitting the energy spectrum only up to 30 GeV (red dashed line), we
indeed find fewer detectable sources at 1 TeV compared to dark matter masses of 300GeV.

3.2 Dark matter subhalo classification with neural networks
In order to identify UNID sources that have the same spectral properties as our dark matter

models predict for subhalos, but differ from known astrophysical sources, we have implemented a
Bayesian Neural Network (BNN). Our setup is based on Ref. [13] where the advantages of using
such a BNN on the energy spectra of γ-ray sources were shown for classifying blazars of uncertain
type. Most notable is the benefit of the uncertainty in the network prediction that can be inferred
from the network output. The training data consists of the 8 values of the source spectra as a function
of energy of the 4FGL-DR3 classified sources (‘Flux_Band’ in the catalog) and the simulated
dark matter subhalos. The network consists of four dense Bayesian layers with 16 nodes, each with
a Gaussian prior on the kernel, ReLU activation and a dropout fraction of 5%. The final layer is fed
through a softmax activation. We use the logarithm of the fluxes as inputs and pre-process them so
that for each energy bin the inputs are distributed around a mean of zero with a standard deviation
of one. For the training process we use the Adam optimiser with a learning rate of 10−3 and stop
the training when the validation loss converges. We leave 10% of the training set, not used during
training, as test sets. Depending on the similarity of the shape of the subhalo spectra to subsets of
the 4FGL sources, the accuracy of our network on the respective test sets ranges from ∼ 90% to
∼ 97% and is consistent for each model with each new training. For the final results, we use the full
dataset for training. The lower end of this accuracy range corresponds to the setups with mDM = 30
GeV and mDM = 80 GeV, and is comparable to the accuracy achieved when learning classification
between different classes within the 4FGL catalog, as in [13].
We use the classification algorithm introduced to estimate the number of γ-ray spectra among
the UNID sources observed by Fermi-LAT that exhibit characteristics similar to those expected
from dark matter subhalos. We apply conservative selection criteria to avoid counting sources
that can be reasonably discarded as subhalo objects, removing all sources showing time variability
(variability index greater than 24.725 [1]) and discarding ”low confidence association” with any
astrophysical source type, leaving 1788 UNID sources for classification with our BNN. We further
distinguish on-plane and off-plane sources based on their location within and outside the Galactic
plane, respectively, using the threshold |b| = 10◦. We expect the dark matter subhalos to be more
evenly distributed across the Galactic halo, rather than clustering predominantly in the Galactic

5



P
o
S
(
I
C
R
C
2
0
2
3
)
9
2
0

Unveiling dark matter subhalos in gamma ray catalogs with machine learning Silvia Manconi

101 102 103

mDM [GeV]

10−25

10−24

10−23

〈σ
v
〉[

cm
3
s−

1
]

Threshold

0.5

0.8

Latitude cut |b| ≥ 10◦

Figure 2: Our limits on annihilating dark matter as a function of dark matter mass assuming b̄b channel for
different classification thresholds and cutting or not low-latitude sources.

plane. In particular, because we expect pulsars with an energy spectrum similar to that expected
from dark matter annihilation to be predominantly in the Galactic plane, the number of off-plane
sources classified as subhalos is a more conservative estimate. We use the class predictions from
our network to distinguish between astrophysical sources and dark matter subhalos. By setting a
threshold on the mean prediction µ minus the standard deviation σ, we can estimate the number
of potential dark matter subhalos among the UNID sources. We apply a range of thresholds
(µ − σ ≥ [0.5, 0.8]) to capture the behaviour of the predictions within a loose and tight selection
threshold, as described in [13]. Comparing the different thresholds allows us to understand the
range of candidates, from a more conservative lower limit to a more optimistic upper limit. We
use a threshold to determine the number of subhalo candidates, i.e. UNID sources that survive our
cuts and have a predicted class label above the threshold. The number of candidates individually
for on-plane and off-plane sources for different dark matter masses and thresholds is detailed in
Ref. [15], Table 1. Furthermore, we make the network predictions for the UNID sources publicly
available for each model.2

3.3 Limits on annihilating dark matter
Our classification algorithm are finally used to set upper limits on the dark matter annihilation

cross section. To do this, we distinguish between sources that are confidently astrophysical in origin
and those that are considered exotic. Exotic sources include γ-ray sources that are confidently
identified as subhalos, as well as sources that cannot be attributed to either dark matter subhalos
or astrophysical objects. We select these sources using a threshold t such that (1 − µ) − σ ≤ t.
The quantity 1 − µ corresponds to the classification score for astrophysical sources, and switching
the labels provides a more conservative selection of sources (table 2 in Ref.[15]). To place a
conservative upper limit on the dark matter annihilation cross section, we adopt the criterion that
the number of detectable subhalo candidates should not exceed the number of exotic sources, i.e.
those sources that cannot be confidently classified as astrophysical. Using the relationship between
the annihilation cross section 〈σv〉 and the number of detectable subhalo candidates, we can translate

2https://github.com/kathrinnp/bnn-subhalo-candidates
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the limit on the number of subhalo candidates into an upper limit on the annihilation cross section
〈σv〉. The resulting limits on the dark matter annihilation cross section are shown in figure 2 for
different classification thresholds as a function of the dark matter mass. As expected, more stringent
classifications of the spectra as astrophysical lead to weaker limits. In figure 2, the upper limits on
the dark matter annihilation cross section are shown using all exotic sources (solid lines) and only
off-plane sources (dashed lines). Since the off-plane sources are expected to have less contamination
from astrophysical sources, they are a better representation of the potential dark matter subhalos.
However, the latitude cut applied to obtain the off-plane sample also removes a significant number
of UNID sources. Therefore, the all-sky results should be considered conservative, while the off-
plane results represent a complementary approach with less contamination from pulsars or other
astrophysical γ-ray sources. Our results show particularly strong limits for the large dark matter
mass model mDM = 1TeV, with 〈σv〉 < 10−24 cm3s−1 excluded for the loose selection. Comparing
our our conservative limits ( (1 − µ) − σ ≤ t = 0.8) with previous research on dark matter subhalo
searches, such as the studies by Coronado-Blazquez et al. (2019a,b) [6, 21] and Calore et al. (2019)
[18], our limits are weaker in the central energy range, but become stronger and more competitive
at low and high dark matter masses, where the subhalo spectra differ more from astrophysical
sources. Unlike previous studies where the number of candidates was fixed for all dark matter
masses studied, we vary the number of sources as a function of dark matter mass, highlighting the
advantage of using γ-ray energy spectra and the importance of a well-trained neural network on
known astrophysical sources, as well as carefully constructed subhalo simulations. In addition, we
anticipate more constraining results for annihilation channels for which the dark matter spectrum
has a more distinct shape with respect to observed astrophysical source, e.g. τ+τ−.

4. Conclusions
In this contribution we have presented a machine learning supported analysis of dark matter

subhalo detection in Fermi-LAT 4FGL-DR3. In order to train our networks, we have performed
careful, realistic simulation of dark matter subhalo detectability and observable flux. We have
estimated the detectability of dark matter subhalos with different dark matter models using 12 years
of Fermi-LAT data. The detectability decreases with increasing dark matter mass due to the spectral
form of the dark matter annihilation fluxes. However, at larger masses, the spectra peak at energies
where the astrophysical γ-ray background is less prevalent, increasing the subhalo detectability.
The main innovation of this study is the use of Bayesian neural networks to classify the unidentified
Fermi-LAT sources. We have identified numerous dark matter subhalo candidates, particularly in
themass range of a few tens of GeV.We aremaking this list of candidate sources publicly available to
allow further investigation of their nature usingmulti-wavelength observations. In addition, we have
used the number of γ-ray sources that the network could not confidently classify as astrophysical
to derive conservative upper bounds on the dark matter annihilation cross sections. Our limits are
particularly competitive at large dark matter masses, where subhalo spectra are more distinct from
astrophysical sources. We therefore demonstrate the importance of separately evaluating the number
of subhalo candidates in Fermi-LAT catalogs for each dark matter model in order to fully exploit
the information contained in the spectra. Further work could explore more sophisticated models
of subhalo formation, including for example baryonic effects, or more complex particle physics
scenarios involving alternative or multiple annihilation channels. In addition, the application of
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unsupervised and weakly supervised machine learning techniques could enable the identification
of anomalous γ-ray sources in a more model-independent way.

S.M. acknowledges the European Union’s Horizon Europe research and innovation programme
for support under the Marie Sklodowska-Curie Action HE MSCA PF–2021, grant agreement
No.10106280, project VerSi. Simulations and neural network training were performed with com-
puting resources granted by RWTH Aachen University under project ‘rwth0754’.
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