PoS - Proceedings of Science
Volume 444 - 38th International Cosmic Ray Conference (ICRC2023) - Gamma-ray Astronomy (GA)
Deep Learning for the HAWC Gamma-Ray Observatory
I. Watson*,  Hawc, A. Albert, R.J. Alfaro, C. Alvarez, A. Andres, J.C. Arteaga Velazquez, D.O. Avila Rojas, H.A. Ayala Solares, R. Babu, E. Belmont-Moreno, T. Capistrán Rojas, S. Yun, A. Carramiñana, F. Carreon-Gonzalez, U. Cotti, J. Cotzomi, S. Coutiño de León, E. de la Fuente, D. Depaoli, C.L. de León, R. Diaz Hernandez, J.C. Díaz Vélez, B. Dingus, M. Durocher, M. DuVernois, K. Engel, M.C. Espinoza Hernández, J. Fan, K. Fang, N.I. Fraija, J.A. Garcia-Gonzalez, F. Garfias, H. Goksu, M.M. González, J.A. Goodman, S.J. Groetsch, J.P. Harding, S. Hernández Cadena, I. Herzog, J. Hinton, B. Hona, D. Huang, F. Hueyotl-Zahuantitla, P. Hüntemeyer, A. Iriarte, V. Joshi, S. Kaufmann, D. Kieda, A. Lara, J. Lee, W.H. Lee, H. Leon Vargas, J. Linnemann, A.L. Longinotti, G. Luis-Raya, K. Malone, J. Martínez-Castro, J. Matthews, P. Miranda-Romagnoli, J.A. Montes, J.A. Morales Soto, M. Mostafa, L. Nellen, M.U. Nisa, R. Noriega-Papaqui, L. Olivera-Nieto, N. Omodei, Y. Pérez Araujo, E.G. Pérez Pérez, A. Pratts, C.D. Rho, D. Rosa-Gonzalez, E. Ruiz-Velasco, H.I. Salazar, D. Salazar-Gallegos, A. Sandoval, M. Schneider, G. Schwefer, J. Serna-Franco, A.J. Smith, Y. Son, W.R. Springer, O. Tibolla, K. Tollefson, I. Torres, R. Torres Escobedo, R.M. Turner, F. Ureña-Mena, E. Varela, L. Villaseñor, X. Wang, I.J. Watson, F. Werner, K. Whitaker, E.J. Willox, H. Hongyi Wu, H. Zhou and K.S. Caballero Moraet al. (click to show)
Full text: pdf
Pre-published on: July 25, 2023
Published on:
We present the results of applying a transformer-based deep learning neural network to the data from the HAWC Gamma-Ray Observatory. HAWC observes the extensive air showers produced by very high energy gamma rays, and registers the Cherenkov radiation produced by the shower by photo-multiplier tubes (PMTs) instrumented in 300 large water Cherenkov detectors. The current HAWC method uses a staged parameterized fitting of the PMT information to find the shower center and incoming angular direction of the initiating gamma-ray, and produces variables which can be used for separating showers produced by gamma rays versus the overwhelming cosmic-ray background. The deep learning model, on the other hand, takes the charge and relative timing information of the PMTs as input and directly outputs an estimate of the incoming direction of the initiating gamma ray and a gamma-hadron discriminator. Both tasks are vital for source analysis. Better angular reconstruction allows for better source localization. Improved cosmic-ray rejection improves the signal-to-noise ratio. The deep learning network is found to perform better in simulation than the current methods at lower energies (around several hundred GeV gamma rays) where fewer PMTs are turned on by the shower, and therefore less information is available.
DOI: https://doi.org/10.22323/1.444.0927
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.