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In the upcoming IceCube-Gen2 extension, the newly developed optical modules will include
4–inch PMTs. For this purpose, the manufacturers Hamamatsu and North Night Vision Technology
have developed new PMT models to meet the requirements of the IceCube-Gen2 science case.
The specifications include strict requirements on temporal resolution, detection efficiency, and
dark noise. We summarize the efforts to measure these performance characteristics and show that
both PMT models meet the performance specifications set by IceCube-Gen2. Prototype optical
modules based on both PMT models will be deployed with the IceCube Upgrade in order to test
them in situ and help decide on a vendor for the Gen2 extension.
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IceCube-Gen2 PMT performance

1. Introduction

Photomultiplier-Tubes (PMTs) are the central component in Cherenkov telescopes such as BAIKAL-
GVD [1], KM3NeT [2] and IceCube [3]. In the planned extension of IceCube-Gen2 [4], 4" PMTs
will be integrated into the optical modules to be embedded in the Antarctic ice. Specifically for
this purposes, the proposed PMT models R16293-01-Y001 (hereafter referred to as BB) and N2041
(hereafter referred to as PO) were developed by Hamamatsu Photonics K.K (HPK) and North Night
Vision Technology (NNVT), respectively. This study focuses on the third and final iteration of the
PMT development process, excluding the results from earlier prototyping stages. The performance
of the utilized PMTs is a major contributor to the efficiency of the entire detector. Hence, strict re-
quirements for various PMT characteristics have been set by the IceCube collaboration. The aim of
the work described here is to verify that these specifications are met by conducting comparable mea-
surements for both PMT models. This work is structured into temperature dependent measurements
(Section 2), the PMT quantum efficiency (Section 3) and homogeneity studies (Section 4).

2. Temperature dependence

Figure 1: Experimental setup for the measure-
ment of PMT pulse parameters. Taken from [5].

Since the optical modules of IceCube-Gen2 will
be embedded in ice at different depths, with
ambient temperatures ranging from −8 °C to
−40 °C [6], it is crucial to examine the low temper-
ature performance of the PMTs and its temperature
dependency.

The measurements of this section were con-
ducted using the setup depicted in Figure 1. It con-
sists of a PMT illuminated by a LED at 385nm [7]
through a fiber equipped with a diffuser which is
placed inside a light-tight enclosure. The enclosure
is further housed inside a climate chamber which is
ramped in 10 °C steps from −50 °C – 20 °C with the
measurements being performed for several hours at
each temperature. The PMT response is captured by
an oscilloscope and the maximum amplitude, time
of this amplitude and charge within a specified win-
dow are recorded for each waveform. For a more
comprehensive understanding of the data acquisition, the reader is referred to [5, pp. 50-52]. With
this setup, three different measurements were conducted for three Hamamatsu (BB9780, BB9786,
BB9789) and three NNVT PMTs (PO4049, PO4052 PO4068) PMTs.

2.1 Gain calibration

The first measurement with this setup aims at determining the supply voltage for which an am-
plification of 5 · 106 is achieved. This amplification level is referred to as nominal gain and the
corresponding supply voltage (dynode voltage ratio as recommended by the manufacturer) is known
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Figure 2: Example of SPE fit and gain curve for PO4049. The SPE fit of the charge histogram (left) provides
the nominal gain, which represents one data point in the right plot. For each temperature, the nominal voltage
(intersection with the gray line) is obtained.

as nominal voltage. For this, the supply voltage is varied at each temperature. The charge spec-
trum measured for a given voltage is fit by the Single Photoelectron (SPE) formula as described
in [5, p. 45]. An example of the SPE fit is shown in Figure 2 (left).

Figure 3: Nominal voltages plotted against op-
eration temperature. NNVT PMTs are plotted in
red and Hamamatsu PMTs in blue colors.

From this fit, the gain can be obtained from the charge
of a single photoelectron (𝑄1/𝑒) amongst other pa-
rameters. The nominal voltage for each temperature
of each PMT is obtained by fitting a power law of
the form 𝑐𝑉𝛽 [8, p. 206] which is shown in Figure 2
(right) whereas the corresponding nominal voltages
for all PMTs are presented in Figure 3.

Decreasing the temperature by ΔT = 70 °C re-
sults in an average gain increase of (29.1 ± 0.4) %
for Hamamatsu and (13.6±0.3) % for NNVT PMTs.
This temperature dependence of the gain is most
likely attributed to an increase of the secondary emis-
sion coefficient of the dynodes. The obtained nomi-
nal voltages are set in the subsequent measurements. Furthermore, it is observed that the Hamamatsu
PMTs exhibit a smaller spread in nominal voltage compared to the NNVT PMTs which on the other
hand need a lower supply voltage to achieve the same gain. Although the sample size within this
study is limited, manufacturer data of large production batches support this claim.

2.2 Dark rate

The dark rate refers to the intrinsic background noise characterized by counting pulse rates in the
absence of any illumination. Since background pulses appear randomly in time, long waveforms
of 1 ms length were measured. From the number of pulses present in a given waveform one can
calculate the dark rate which is done for more than 107 waveforms for each temperature step. To
avoid triggering on baseline noise, a threshold of 3 mV (∼ 0.47 PE) was set. Consequently, low
amplitude pulses are rejected. Since the charge is recorded and the nominal gain is known one can
express this threshold in units of PE (charge/𝑄1) which is shown in Figure 4 (left).
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Figure 4: Additional evaluation for dark rates: (left) Binned amplitudes with the corresponding charge in
units of PE where the trigger level in units of PE is obtained via a linear fit. (right) Fitting a Poissonian
distribution onto the uncorrelated peak to classify noise contributions.

In addition to this amplitude threshold, a charge cut of 0.2 PE is set to further reject baseline noise.
Note that a threshold–free measurement will produce higher dark rates than shown here.
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Figure 5: Mean dark rates of both vendors plot-
ted against temperature.

A histogram based on the time difference be-
tween two successive pulses is shown in Figure 4
(right) where one can distinguish between correlated
pulses caused by scintillation induced by radioactive
decays in the glass bulb, and uncorrelated pulses,
random pulses fitted by an exponential decay. For
a more in–depth description, the reader is referred
to [5, pp. 108-112].

Figure 5 displays the mean total dark rate of all
PMTs from both vendors. Hamamatsu PMTs exhibit
somewhat lower dark rates than NNVT PMTs at tem-
peratures below 0 °C. This difference is attributed to
the reduced presence of correlated noise in Hama-
matsu PMTs, indicating less scintillation induced by radioactive decays from the enveloping glass
bulb. However, at temperatures above 0 °C, the dark rates of Hamamatsu PMT increase significantly
due to thermionic emission.

2.3 Timing resolution

To determine the timing characteristics, low light illumination (pulse occupancy less than 10%;
<5 % multi-PE pulses) is used such that mostly SPE pulses contribute – otherwise the characteristics
would yield different values in case multiple photons are detected simultaneously. The timing
resolution, known as Transit Time Spread (TTS), is calculated from 10-µs-long waveforms.

For the TTS analysis, the relative pulse times with respect to the light source trigger are plotted
in a histogram as shown in Figure 6 (left). The distribution of the histogram deviates from a Gaussian
shape, particularly in the right tail region which is a consequence of full photocathode illumination
in conjunction with the asymmetric curvature of the first dynode. While this is observed for all
PMTs it is more pronounced in the models studied in this work. Hence, instead of fitting a Gaussian
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Figure 6: Evaluation for the TTS: (left) Binned arrival times, with the orange line indicating a Gaussian
fit around the peak of the distribution and the blue line representing the data. (right) Comparison of the
numerically calculated TTS plotted against temperature for each PMT.

distribution to the peak, the numerical standard deviation of the entire main peak distribution (-8 ns,
17 ns) is used (Figure 6 (right)). Overall, NNVT PMTs feature on average about (18.6±0.1) % better
time resolution compared to Hamamatsu PMTs. PMT BB9780 shows an increase of 3.5 % in TTS
towards lower temperatures whilst PO4052 demonstrates an 8 % decrease. The other PMTs perform
essentially constant (<1.5 % relative deviations). Though statistics is low Hamamatsu PMTs tend
to have stronger variations in TTS, with comparatively twice the overall standard deviation.

3. Quantum efficiency

Figure 7: Experimental setup to measure
the quantum efficiency. Taken from [5].

The quantum efficiency (QE) is a crucial PMT charac-
teristic. It represents the probability that a photoelectron
is emitted by a photon striking the photocathode, and is
wavelength dependent. For this, the setup shown in Fig-
ure 7 is used. The wavelength 𝜆 of high intensity light
(emitted from a Xenon lamp) is selected by a monochro-
mator in the range of 250 nm – 700 nm in increments of
10 nm. The beam is directed either to a calibrated photo-
diode (PHD in Figure 7) or a PMT. The PMT is attached
to a base that shortcuts all dynodes, allowing collection of
each photoelectron striking the multiplier system without
multiplication. Since the beam is divergent, its spot size
on the PMT can be adjusted to illuminate the entire pho-
tocathode by positioning the PMT further from the iris.
The respective current 𝐼 as well as the dark current 𝐷𝐶

are measured using a picoamperemeter. The quantum
efficiency of the PMT is calculated using the equation

𝑄𝐸 (𝜆) = 𝐼PMT(𝜆) − 𝐷𝐶PMT
𝐼Diode(𝜆) − 𝐷𝐶Diode

· 𝑄𝐸Diode(𝜆).
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Figure 8: Quantum efficiency for the entire spectral range (left) and near the module cutoff (right).

The results are shown in Figure 8. NNVT PMTs feature a higher maximum quantum efficiency at
wavelengths around 360 nm ((31.1± 0.1)%) than Hamamatsu PMTs ((25.8± 0.1)%) which exhibit
a slightly broader spectrum. Both PMT models feature a similar cutoff at around 270 nm since both
PMT corpora consist of borosilicate glass. The same holds true for the pressure vessel of IceCube-
Gen2s optical module as indicated by the black line in the right plot where a comparable PMT
quantum efficiency is desired. Hamamatsu PMTs tend to show slightly higher quantum efficiencies
near this cutoff which may be attributed to thinner glass in front of the photocathode area.

4. Homogeneity scan

Depending on the incident position of the photon on the photocathode, the aforementioned charac-
teristics may change due to different path lengths of photoelectrons inside of a PMT.

Figure 9: Experimental setup to scan the photo-
cathode. Taken from [9].

Instead of using diffuse illumination, light from
a collimated fiber is used to scan the photocathode
surface (Figure 9). The PMT is located inside a
Helmholtz-cube which is set to compensate Earth’s
magnetic field, nullifying its influence on the mea-
surements, whereas the data acquisition is analogous
to Section 2. For additional information, the reader
is referred to [9].

In the following, the center region is defined for
the area with 𝑟 < 30 mm and the edge region for
the area with 𝑟 > 45 mm. The resulting scan of the
transit time relative to the center region and the absolute gain is shown in Figure 10. It is apparent
that the performance deteriorates towards the edges which is averaged over in the diffuse light
measurements as presented in Section 2. The asymmetric distribution of the transit time values
arises from the first dynode being curved in the positive y-direction in this representation.

While the gain values demonstrate relatively homogeneous behavior across the radial distance,
the transit time values exhibit a noticeable slope along the y-direction. In order to compare both
PMT models, instead of heatmaps as presented in Figure 10, the results in Figure 11 are shown as
scatter plots as a function of radial distance to the photocathode center.
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Figure 10: Entire data set for relative transit time (left) and absolute gain (right) for BB9786.

Figure 11: Comparison between both PMT models as a function of radial distance towards center.
(left) Transit time relative to the center. (right) Gain normalised to the center.

Comparing both data sets, the mean and standard deviations for the overall transit time are
(1.75± 2.48) ns for NNVT and (2.10± 2.66) ns for Hamamatsu PMTs whereas the edge regions ex-
hibit values of (5.37 ± 3.46) ns and (5.93 ± 3.07) ns respectively, while NNVT PMTs show slightly
higher maximum deviations but a more uniform distribution in the center. Thus, NNVT PMTs
demonstrate a more uniform timing response in the center but worse towards the edges. Contrarily,
regarding the gain, the standard deviations relative to the mean in the center are 3.7 % (NNVT)
and 3.1 % (Hamamatsu), whereas at the edges, they are 20.5 % (NNVT) and 19.0 % (Hamamatsu).
Smoothed curves reveal a drop of 20% in gain at approximately 0.93 · 𝑟 for both models and a slight
increase in gain is observed around 40 mm. In both regards the investigated 4-inch PMTs exhibit
similar performance and are within the expectations. However, it is important to note that only a
single PMT from each vendor was measured.

5. Conclusion

Considering the importance of the PMTs’ outer dimensions for module construction (refer to [10]),
the performance requirements have a certain degree of flexibility. The metrics presented in this
work are listed in Table 1, and both manufacturers fulfill the specifications set by the collaboration.

7



P
o
S
(
I
C
R
C
2
0
2
3
)
9
8
5

IceCube-Gen2 PMT performance

In summary, NNVT PMTs operate at lower nominal voltages and exhibit higher dark rates due to
correlated noise, with larger PMT-to-PMT fluctuations compared to Hamamatsu PMTs. NNVT
PMTs offer better timing resolution and higher quantum efficiency, though with a slightly higher
cutoff. Whilst NNVT PMTs are slightly more homogeneous in the PMT center, the PMT response
exhibits more variation towards the edges. Although this study had a limited sample size and
more PMTs need to be measured, the results suggest that the tested 4-inch NNVT PMTs performed
slightly better compared to Hamamatsu PMTs. To conclude, both vendors are viable options for the
optical modules of IceCube-Gen2, which require production of over 160,000 PMTs.

Table 1: PMT requirements considered in this work. The TTS is defined as 8 ns (FWHM), and the values
stated here represent the standard deviations of a Gaussian fit to the peak of the main peak timing histogram.

Req. BB9780 BB9786 BB9789 PO4049 PO4052 PO4052
Nominal Voltage (V) < 1500 994 996 995 741 728 828
TTS (ns) < 3.4 2.51 2.58 2.38 1.75 1.86 1.75
Max QE (%) > 25 25.95 26.24 25.29 29.85 30.15 33.24
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