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In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino
experiments will also be sensitive to physics beyond the Standard Model. ORCA is an atmospheric
neutrino detector currently being built at the bottom of the Mediterranean Sea, that will measure
atmospheric neutrino oscillation parameters with high precision and probe new physics at GeV
energies. The final ORCA configuration of 115 string-like vertical detection units will be able
to probe several theories beyond the Standard Model in neutrino physics. In this work, a three-
flavour neutrino oscillation scenario in which the third neutrino mass state, 𝜈3, decays into an
undetectable state, e.g., a sterile neutrino, is investigated with the first configuration of ORCA
with six detection lines, ORCA6. A refined high-purity neutrino sample corresponding to 433
kton-years of data taking has been analysed and optimised for the search of this phenomenon.
This contribution presents the bounds obtained in the decay parameter, 𝛼3 = 𝑚3/𝜏3, and future
sensitivity perspectives with ten years of data taking with the future ORCA configuration of 115
detection units.
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1. Introduction

KM3NeT is an ongoing research infrastructure situated on two sites of the Mediterranean Sea’s
seabed [1]. ARCA (Astroparticle Research with Cosmic in the Abyss) is positioned 100 km off the
Sicilian coast near Capo Passero, Italy, at a depth of 3500 m. With a planned instrumented mass
of 1 Gton of seawater, it is dedicated to the search for high-energy neutrinos from astrophysical
sources. ORCA (Oscillation Research with Cosmic in the Abyss) is situated near Toulon, France,
40 km offshore at a depth of 2500 m and will cover approximately 7 Mton of seawater. ORCA aims
to investigate neutrino oscillations and determine the neutrino mass ordering (NMO) by detecting
neutrinos produced in the Earth’s atmosphere [2].

The detection system consists of an array of pressure-resistant glass spheres denominated
Digital Optical Modules (DOMs) housing 31 photomultiplier tubes (PMTs) and the corresponding
readout boards [3]. The DOMs are supported by verticle flexible strings known as Detection
Units (DUs), which are firmly anchored to the seabed. ORCA will have a total of 115 DUs, each
containing 18 DOMs, vertically spaced by 9 m, while the horizontal separation between DUs is 20
m. Presently, 18 DUs have been deployed. The results presented herein correspond to the initial
data collection using the 6-DU configuration referred to as ORCA6.

The detection principle employed by the ORCA detector relies on the Cherenkov effect, which
occurs when charged particles surpass the speed of light in the medium and emit Cherenkov
radiation. This detection mechanism allows for the accurate reconstruction of essential interaction
parameters such as the interaction vertex, energy, direction, and event topology of the interacting
neutrino. The resulting event topology exhibits specific characteristics, with track-like patterns for
GeV muons produced in 𝜈𝜇-CC interactions and shower-like patterns for other neutrino channels.

The ORCA detector, currently under construction, has been continuously collecting data in the
deep sea since mid-2019. From January 2020 to November 2021, data acquisition was carried out
using the 6-DU configuration. A careful run selection process was implemented to ensure stringent
data quality standards. Following this selection, a total of 510 days of high-quality data were
included in the analysis, which, taking into account the current instrumented volume corrected by
the working PMTs, corresponds to an exposure of 433 kton-years. Notably, a preliminary analysis
searching for invisible neutrino decay was previously conducted using a subset of this dataset,
comprising a total of 296 kton-years [4]. Several enhancements have been implemented in both the
selection process and the subsequent analysis. Anti-noise cuts and a Boosted Decision Tree (BDT)
machine learning algorithm are used to remove the atmospheric muon background (based on an
atmospheric (atm.) muon score) and to discriminate between the two possible event topologies:
track-like events and shower-like events, based on a track score.

After applying the pre-selection and removing events with high atm. muon scores, the remain-
ing events are divided into two classes: tracks and showers. The track class is then subdivided into
two subclasses based on the muon score, distinguishing well-reconstructed tracks from potentially
misidentified atmospheric muons. This results in three distinct classes: High Purity Tracks, Low
Purity Tracks, and Showers.

To further enhance the event selection, an additional criterion is implemented by imposing
distinct thresholds for the reconstructed energy in the shower and track classes. Showers with a
reconstructed energy exceeding 1 TeV and tracks with reconstructed energy above 100 GeV are
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excluded. This specific threshold is chosen to mitigate the influence of unaccounted migrations
from higher energies (above 10 TeV) in the simulation. Following this selection, it is expected that
5830 events will satisfy the criteria, whereas a total of 5828 events were observed in the dataset.

2. Invisible neutrino decay

Neutrino decay can be mathematically represented by a depletion factor, given by 𝐷 = 𝑒
− 𝑡

𝜏𝑖 ,
where 𝜏𝑖 corresponds to the rest-frame lifetime of the mass state 𝑚𝑖 , and 𝑡 represents the proper
time [5]. For relativistic neutrinos in the laboratory frame, the depletion factor can be expressed
as 𝐷 = 𝑒

−𝑚𝑖𝐿

𝜏𝑖𝐸 , where 𝐿 denotes the distance travelled by the neutrino and 𝐸 represents its energy.
This equation quantifies the fraction of neutrinos with a specific energy that remains intact after
traversing a given distance. All three neutrino mass states can decay in principle, but in this analysis
we focus on the third neutrino mass state, of which the invisible decay is not constrained from solar
and supernova data, as it happens for 𝜈1 and 𝜈2. In order to allow for the invisible neutrino decay, a
new term must be included in the Hamiltonian:

𝐻Total =
1

2𝐸

𝑈
©«

0 0 0
0 Δ𝑚2

21 0
0 0 Δ𝑚2

31

ª®®¬𝑈† +𝑈
©«

0 0 0
0 0 0
0 0 −𝑖𝛼3

ª®®¬𝑈†

 +
©«
𝑉 0 0
0 0 0
0 0 0

ª®®¬ , (1)

where 𝐸 is the neutrino energy, 𝑈 is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino
mixing matrix, 𝑉 = ±

√
2𝑁𝑒𝐺𝐹 being the matter potential, 𝑁𝑒, the electron density in matter and

𝐺𝐹 , the Fermi constant. Essentially, the only change in the Hamiltonian is a shift in the mass basis
term, from Δ𝑚2

31 to Δ𝑚2
31 − 𝑖𝛼3.

As a consequence of neutrino decay, the mixing matrix becomes non-hermitian. Consequently,
the total sum of neutrino oscillation probabilities deviates from unity,

𝑃𝛽𝑒 + 𝑃𝛽𝜇 + 𝑃𝛽𝜏 = 1 − 𝑃𝐷 (𝛽) 𝛽 = 𝑒, 𝜇, 𝜏, (2)

where 𝑃𝐷 (𝛽) is the decay probability for flavour 𝛽.
The impact of neutrino decay on the oscillation pattern can be observed in figure 1, depicting

the decay effects on the survival (resp. transition) probability of muon (resp. electron) neutrinos.
The oscillation parameter values used are obtained from NuFit 5.0 [8]. Notably, the decay effects
induced by 𝛼3 has a more pronounced impact on channels associated with the muon flavor, owing
to the relatively higher contribution of 𝜈3 in the 𝜈𝜇 component. Regardless of the mass ordering,
the channel that experiences the most substantial effects of neutrino decay is 𝑃𝜇𝜇.

The correlation between 𝛼3 and 𝜃23 exhibits a subtle yet distinct behavior in the oscillation
and survival channels. Extensive investigations on the interplay between 𝜃23 and 𝛼3 have been
conducted for specific baselines in references [6, 7]. However, in atmospheric neutrino experiments
encompassing a wider range of baselines, this correlation becomes more complex. Figure 2 displays
the muon neutrino survival probability (electron neutrino oscillation to muon) for four scenarios
characterised by different 𝜃23 − 𝛼3 values. The decrease in the survival probability 𝑃𝜇𝜇 at the
oscillation maxima, induced by neutrino decay effects, can be partially compensated by reducing
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Figure 1: Probability for muon neutrino survival (top left), electron-to-muon transition (top right), electron
neutrino survival (bottom left) and muon-to-electron transition (bottom right) as a function of energy at a
cosine of the zenith angle cos 𝜃𝑧 = − 0.85. Three values of the decay constant are considered: 𝛼3 = 0
(green), 𝛼3 = 10−5 eV2 (blue) and 𝛼3 = 10−4 eV2 (red). The solid (dashed) curves are for normal ordering,
NO (inverted ordering, IO). Antineutrino probabilities can be described by the same curves but swapping the
orderings.

the value of 𝜃23 to the lower octant. However, such compensation results in an increased probability
in the energy range where matter effects play a significant role. On the other hand, for the transition
probability 𝑃𝑒𝜇, a higher value of 𝜃23 serves as a counterbalance to the decay-induced decrease.
This will partially affect to the possibility to constrain both parameters at the same time.

3. Analysis

The analysis relies on 2-dimensional distributions of the reconstructed energy and reconstructed
cosine of the zenith angle for each of the three event classes. These distributions are obtained through
Swim [9], an analysis framework developed for KM3NeT which incorporates Monte Carlo (MC)
simulations to model the detector response. Cross sections, neutrino fluxes, the interaction volume,
and oscillation probabilities are taken into account when calculating the true energy and zenith
angle distributions for each type of (anti)neutrino interaction.

Neutrinos are simulated from all angles and over a broad true energy range, from 1 GeV to
10 TeV. For the analysis, 10 bins in the reconstructed cosine of the zenith angle are used, and only
reconstructed upward directions are taken into account. The reconstructed energies range from 2 to
1000 GeV, employing 15 unevenly spaced bins to ensure that each bin had enough statistics. Note
that tracks with reconstructed energies above 100 GeV are rejected, so the 15th bin, which ranges
from 100 to 1000 GeV, only contains shower events.
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Figure 2: Probability for muon neutrino survival (left) and electron-to-muon transition (right) as a function
of energy at a cosine of the zenith angle cos 𝜃𝑧 = − 0.85 assuming NO. Four cases are shown: 𝛼3 = 0 with
𝜃23 = 50◦ (solid green), 𝛼3 = 10−5 eV2 with the same value of 𝜃23 (dashed green) and with two different
values: 𝜃23 = 52◦ (dashed red) and 𝜃23 = 40◦ (dashed blue).

A response matrix is used to account for the detector resolution and it is evaluated by recon-
structing MC events that relates true and reconstructed variables. For each interaction channel
𝜈𝑥 and class 𝑖, a 4-dimensional response matrix 𝑅 [𝜈𝑥→𝑖 ] (𝐸true, 𝜃true, 𝐸reco, 𝜃reco) is defined. Each
entry within the matrix represents the efficiency of detection, classification, and reconstruction
probability for a specific true bin (𝐸true, 𝜃true). The expected interacting events are multiplied by
these corresponding efficiencies to yield the reconstructed events of a given class 𝑖.

𝑛𝑖reco(𝐸reco, 𝜃reco) =
∑︁
𝑥

𝑛𝑥int(𝐸true, 𝜃true) × 𝑅 [𝜈𝑥→𝑖 ] (𝐸true, 𝜃true, 𝐸reco, 𝜃reco), (3)

The analysis method used to constrain the invisible decay parameter, 𝛼3, is based on the maxi-
mization of a binned log-likelihood of the 2-dimensional distribution of events in log10(𝐸reco/GeV)
and cos 𝜃reco, which compares the observed data to a model prediction. The sensitivities are com-
puted using the Asimov approach, where the observed data is replaced by a representative dataset
defined as the one which provides the expected values of the null hypothesis in each bin [10]. This
analysis is not sensitive to 𝜃13, 𝜃12, Δ𝑚2

21 and 𝛿𝐶𝑃, so they are fixed to the NuFit 5.0 [8] values.
Poisson distributions for the expected number of events in each bin and Gaussian distributions
related to the nuisance parameters are used to model the log-likelihood:

−2 log 𝐿 ( ®𝜃) = min
®𝜖

{
2
∑︁
𝑖, 𝑗

[
(𝑁mod

𝑖 𝑗 ( ®𝜃; ®𝜖) − 𝑁dat
𝑖 𝑗 ) + 𝑁dat

𝑖 𝑗 log

(
𝑁dat
𝑖 𝑗

𝑁mod
𝑖 𝑗

( ®𝜃; ®𝜖)

)]
+ (4)

+
∑︁
𝑘

(
𝜖𝑘 − ⟨𝜖𝑘⟩

𝜎𝑘

)2
}
.

𝑁mod
𝑖 𝑗

and 𝑁dat
𝑖 𝑗

represent the number of reconstructed events expected by the model and the
number of events observed, respectively, in the bin (𝑖, 𝑗). The parameter of interest, ®𝜃, is 𝛼3 in
this analysis. The parameters of the model that characterise the distributions (®𝜖) are composed by
nuisance parameters which are related to systematic uncertainties. Some of these parameters are
constrained with priors representing constraints from other experiments. Specifically:
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1. Normalisations: the overall normalisation as well as the relative normalisations of the High
Purity Track and Shower classes are allowed to vary with no constraints. A 20% prior
uncertainty is applied to the normalisation of neutral current (NC) and 𝜏-CC events. At
high energies (above 500 GeV), as a result of further approximations in the light propagation
simulation in KM3NeT/ORCA, a 50% relative normalisation uncertainty is applied to events
simulated in this regime.

2. Flux: the spectral index of the neutrino flux energy distribution, as 𝜙 × 𝐸 𝑠, is allowed to
vary from 𝑠 = 0 with a standard deviation of 0.3. The ratio of electron neutrinos to electron
antineutrinos is allowed to vary with a 7% prior uncertainty. The ratio of muon neutrinos
to muon antineutrinos is allowed to vary with a 5% prior uncertainty. The ratio of muon
neutrinos to electron neutrinos is allowed to vary with a 2% prior uncertainty. The ratio of
vertical to horizontal neutrinos, introduced as 1 + 𝑟h/v cos 𝜃, is allowed to vary from 𝑟h/v = 0
with a standard deviation of 0.02.

3. The absolute energy scale of the detector is allowed to vary with a 9% prior uncertainty. The
energy scale is related to the uncertainty on water optical properties and on the knowledge of
the PMT efficiencies.

4. Oscillation parameters: Δ𝑚2
31 and 𝜃23 are allowed to vary without constrains.

4. Results

The ORCA6 dataset has been studied to constrain the invisible decay parameter, 𝛼3. The model
is fitted to the dataset using 2-dimensional histograms on the reconstructed energy and direction.
The results of the fit are subsequently transformed to the L/E (path length over neutrino energy)
variable for the purpose of visualising the outcomes in figure 3. This is done for the standard
case (stable scenario), decay (𝛼3 is freely fitted) and a high decay scenario to illustrate its effects
(𝛼3 = 1.1 × 10−3eV2, nuisance parameters are fixed to the decay best-fit).

The best-fit values for the parameters are sin2 𝜃23 = 0.51+0.06
−0.07 and Δ𝑚2

31 = 2.14+0.36
−0.25 · 10−3eV2

for the standard case and sin2 𝜃23 = 0.52+0.07
−0.07, Δ𝑚2

31 = 2.21+0.33
−0.24 · 10−3eV2 and 𝛼3 = 1.08+1.4

−0.7 ·
10−4eV2 for the decay best-fit. The significance of the data preference to invisible neutrino decay
compared to the stable scenario is estimated at 1.8𝜎.

The invisible neutrino decay parameter has been scanned and profiled in terms of the neg-
ative log-likelihood to provide a 1-dimensional scan in figure 4 (left) in comparison with the
results of other experiments (T2K+NO𝜈A combination [12], T2K+MINOS combination [13] and
SK+K2K+MINOS combination [14]). The 2-dimensional scan to constrain 𝜃23 and 𝛼3 at the same
time is shown as a 90% CL contour in figure 4 (right) compared to the previous ORCA6 result [4].
At every point in the contour, the log-likelihood is minimised relative to all nuisance parameters
and the 90% CL contour is drawn through the recovered likelihood landscape.

Figure 5 shows the impact of the different systematic uncertainties is computed comparing the
nominal best-fit value of 𝛼3 with the result of the fit when fixing the considered nuisance parameter
shifted ± its post-fit uncertainty. Black dots with error bars represent the pulls of the best-fit
parameters. The error bars are computed as the post-fit uncertainty divided by the pre-fit uncertainty
(priors). If the parameter was unconstrained, the pull is computed based on the post-fit uncertainty

6
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Figure 3: Distributions of the events divided by the bin width as a function of the reconstructed path length
over neutrino energy, 𝐿/𝐸 , for the Standard bestfit (gray), decay bestfit (red), high decay scenario (blue) and
data (black) for the three classes, High Purity Tracks (top left), Low Purity Tracks (top right) and Showers
(bottom).
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Figure 4: Profiled negative log-likelihood scan of the invisible neutrino decay parameter, 𝛼3 (left) and 90%
CL 𝜃23 − 𝛼3 contour (right).

and the error bar is 1. This test provides insights into the parameter correlations. Specifically, 𝛼3

exhibits strong correlations with the normalisations, the spectral index, the horizontal to vertical
flux ratio and 𝜃23.

5. Conclusions

With only 5% of its final configuration, the ORCA detector is starting to provide competitive
results probing physics beyond the Standard Model such as the invisible neutrino decay. The best fit
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Figure 5: Impact of the different systematic parameters computed as a shift in the parameter of interest, 𝛼3
when the nuisance parameter is shifted and fixed. Systematics Pulls are reported as black dots.

value is 𝛼3 = 1.08+1.4
−0.7 · 10−4eV2 with a preference for invisible neutrino decay of 1.8𝜎 with respect

to the stable scenario. The detector deployment is progressing steadily and these measurements
will improve as the detector volume gets larger and reconstruction and selection efficiencies are
enhanced. Specifically, after 10 years of the complete ORCA115 detector, the 90% CL sensitivity
is expected to improve by two orders of magnitude [15].
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