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Endpoint divergences in inclusive �̄� → 𝑋𝑠𝛾 Tobias Hurth

1. Introduction

The inclusive decay modes �̄� → 𝑋𝑠,𝑑𝛾 and �̄� → 𝑋𝑠,𝑑ℓ
+ℓ− are golden modes of the indirect

search for new physics at the Belle-II experiment [1–3]. The Belle II experiment will collect two
orders of magnitude larger data samples than the 𝐵 factories [4] and will measure the inclusive
decays with the highest precision. Therefore, subleading effects have become now relevant on the
theory side.

Within the heavy mass expansion (HME), these inclusive so-called penguin modes are domi-
nated by the partonic contributions, which can be calculated perturbatively, and sub-leading con-
tributions start at the quadratic level, (Λ/𝑚𝑏)2 only. However, it is well known that this operator
product expansion breaks down in these inclusive modes if one considers operators beyond the
leading ones. This breakdown manifests in nonlocal power corrections, also called resolved con-
tributions. They are characterised by containing subprocesses in which the photon couples to light
partons instead of connecting directly to the effective weak-interaction vertex [5].

These resolved contributions can be systematically calculated using soft-collinear effective
theory (SCET). In the case of the inclusive �̄� → 𝑋𝑠𝛾 decay, all resolved contributions to 𝑂 (1/𝑚𝑏)
have been calculated some time ago [6]. Also, the analogous contributions to the inclusive �̄� →
𝑋𝑠,𝑑ℓ

+ℓ− decays have been analysed to 𝑂 (1/𝑚𝑏) [7, 8].
Recently, the uncertainty due to the resolved contribution was reduced with the help of a

new hadronic input [9, 10]. But these resolved contributions still represent the largest uncertainty
of order 4 − 5% in the prediction of the inclusive decay rate �̄� → 𝑋𝑠𝛾 [12] and of the low-𝑞2

observables of �̄� → 𝑋𝑠,𝑑ℓ
+ℓ− [13–15].

Moreover, a large scale dependence and also a large charm mass dependence were identified
in the lowest order result of the resolved contribution, which calls for a systematic calculation of
𝛼𝑠 corrections and renormalisation group (RG) summation [10, 16]. A mandatory prerequisite for
this task is an all-order in the strong coupling constant 𝛼𝑠 factorisation formula for the subleading
power corrections.

One finds a factorisation formula for the various contributions to the inclusive penguin de-
cays [6], where the symbol ⊗ denotes the convolution of the soft and jet functions.

𝑑Γ(�̄� → 𝑋𝑠 𝛾, ℓ
+ℓ−) =

∞∑︁
𝑛=0

1
𝑚𝑛

𝑏

∑︁
𝑖

𝐻
(𝑛)
𝑖
𝐽
(𝑛)
𝑖

⊗ 𝑆 (𝑛)
𝑖

+
∞∑︁
𝑛=1

1
𝑚𝑛

𝑏

[∑︁
𝑖

𝐻
(𝑛)
𝑖
𝐽
(𝑛)
𝑖

⊗ 𝑆 (𝑛)
𝑖

⊗ 𝐽 (𝑛)
𝑖

+
∑︁
𝑖

𝐻
(𝑛)
𝑖
𝐽
(𝑛)
𝑖

⊗ 𝑆 (𝑛)
𝑖

⊗ 𝐽 (𝑛)
𝑖

⊗ 𝐽 (𝑛)
𝑖

]
. (1)

The first line describes the so-called direct contributions, while the second line contains the resolved
contributions. The latter appear first only at the order 1/𝑚𝑏 in the heavy-quark expansion. Here
hard functions 𝐻 (𝑛)

𝑖
describe physics at the high scale 𝑚𝑏. 𝐽

(𝑛)
𝑖

are the so-called jet functions
which represent the physics of the hadronic final state 𝑋𝑠 at the intermediate hard-collinear scale√︁
𝑚𝑏ΛQCD. The soft functions 𝑆 (𝑛)

𝑖
, the so-called shape functions, parameterise the hadronic physics

at the scale ΛQCD. Within the resolved contributions, we have a new ingredient in the factorisation
formula, the so-called anti-hardcollinear jet functions 𝐽 (𝑛)

𝑖
due to the coupling of virtual photons

with virtualities of order
√︁
𝑚𝑏ΛQCD to light partons instead of the weak vertex directly. They are

2



P
o
S
(
F
P
C
P
2
0
2
3
)
0
0
6

Endpoint divergences in inclusive �̄� → 𝑋𝑠𝛾 Tobias Hurth

not represented by cut propagators as the usual jet functions but as full propagator functions dressed
by Wilson lines.

However, the specific resolved 𝑂8𝑔 − 𝑂8𝑔 contribution does not factorise because the convo-
lution integral is ill-defined. The authors of Ref. [6] claimed that there is an essential difference
between divergent convolution integrals in power-suppressed contributions of exclusive 𝐵 decays
and the divergent convolution integral in the present case, while the former were of IR origin, the
latter divergence were of UV nature. Nevertheless, using a hard cut-off in the resolved contribu-
tion, the sum of direct and resolved 𝑂8𝑔 − 𝑂8𝑔 contributions was shown to be scale and scheme
independent at the lowest order. However the failure of factorisation did not allow for a consistent
resummation of large logarithms. In a recent paper, the divergences in the resolved and in the direct
contributions were identified as endpoint divergences. It was shown that also the divergence in the
direct contribution can be traced back to a divergent convolution integral [17].

Recently new techniques [18–21] were presented in specific collider applications, which allow
for an operator-level reshuffling of terms within the factorisation formula so that all endpoint
divergences cancel out. This idea of refactorisation was now implemented in this flavour example
of the resolved contributions, which includes nonperturbative soft functions, and the subleading
shape functions, not present in collider applications [17]. This is the first QCD application of these
new refactorsiation techniques in flavour physics.

In the following, we present the various steps of this analysis. This analysis leads to a
renormalised factorisation theorem on the operator level for these resolved contributions to all
orders in the strong coupling constant. This result establishes the validity of the general factorisation
theorem, given in Eq. 1, - also for the𝑂8𝑔−𝑂8𝑔 contributions. This theorem now allows for higher-
order calculations of the resolved contributions and consistent summation of large logarithms [17].

2. Matching on SCET and degeneracies in the EFT

The first step in the derivation of a factorisation theorem is hard matching. We have to match
the electroweak operator onto SCET. The operator under consideration, 𝑂8 1:

𝑂8𝑔 = − 𝑔𝑠

8𝜋2 𝑚𝑏 𝑠𝜎𝜇𝜈 (1 + 𝛾5)𝐺𝜇𝜈𝑏 , (2)

matches onto two possible SCET operators. The direct contribution is represented by a next-to-
leading power (NLP) 𝐵-type current in SCET, i.e. a power-suppressed current composed of two
collinear building blocks (see left figure of Figure 2):

O𝐵1
8𝑔 (𝑢) =

∫
𝑑𝑡

2𝜋
𝑒−𝑖𝑢𝑚𝑏𝑡 𝜒ℎ𝑐 (𝑡�̄�) 𝛾𝜈⊥𝑄𝑠 B𝜈

ℎ𝑐⊥ (0) 𝛾𝜇⊥ A𝜇
ℎ𝑐⊥ (0) (1 + 𝛾5) ℎ (0) , (3)

with 𝑄𝑠 as the electric charge of the strange quark in units of 𝑒 and the electromagnetic gauge-
invariant transverse photon field

B𝜈
ℎ𝑐⊥ = 𝑒

(
𝐴𝜈
⊥ −

𝜕𝜈⊥
𝑛𝜕
𝑛𝐴

)
. (4)

1For the various conventions we refer the reader to Ref. [17]
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<latexit sha1_base64="Hx/r8GtOrCEGLJO0ZHHaQF1Z9vU="></latexit>

h/hc

b

�hc

O8

ghc

shc

Figure 1: QCD diagram at LO, see text.
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<latexit sha1_base64="ke1ahY2petCCU6YEqZ2lA2p1ZoA="></latexit>
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shc

Figure 2: SCET diagrams: direct (left) and resolved (right) contributions, see text.

The second operator in SCET on which the electroweak operator 𝑂8𝑔 matches is a leading-power
(LP) 𝐴-type current, i.e. a leading-power current including one collinear building block, :

O𝐴0
8𝑔 (0) = 𝜒

ℎ𝑐
(0) /𝑛

2
𝛾𝜇⊥A𝜇

ℎ𝑐⊥ (0) (1 + 𝛾5) ℎ (0) , (5)

with the gauge invariant gluon field A𝜇
ℎ𝑐⊥ = 𝑊

†
ℎ𝑐

[
𝐷

𝜇

ℎ𝑐⊥𝑊ℎ𝑐

]
= A𝑎𝜇

ℎ𝑐⊥𝑡
𝑎. Then the resolved

contribution is represented by a time-ordered product of this leading-power (LP) 𝐴-type current,
with a subleading L (1)

𝜉𝑞
Lagrangian, see right figure of Fig. 2.

We can compare the different kinematics of the diagrams with 𝐴- and 𝐵-type currents in
Figure 2. The external s-quark carries hardcollinear momentum. Therefore the intermediate
propagator is hard. This situation is represented in SCET by the 𝐵-type current. When the
momentum of the external s-quark tends to zero, the propagator becomes anti-hardcollinear and
cannot be integrated out – it must be reproduced by a dynamical field in the low energy EFT. This
situation is represented in SCET by the time-order product of subleading Lagrangian and the 𝐴-type
current. The degeneracy in the EFT description is the reason why the SCET develops divergencies
in the convolution integrals.

For the explicit matching of the two currents at leading order (LO) we find

CB1
LO (mb, u) = (−1) 𝑢

𝑢

𝑚2
𝑏

4𝜋2
𝐺𝐹√

2
𝜆𝑡 𝐶8𝑔 = (−1) 𝑢

𝑢
CA0

LO (mb) , (6)

where we use the hardcollinear momentum fraction 𝑢 =
�̄�𝑝𝑠
𝑚𝑏

and 𝑢 = 1 − 𝑢 =
�̄�𝑝𝑟
𝑚𝑏

with the
hardcollinear momenta of the strange quark and the gluon, �̄�𝑝𝑠 and �̄�𝑝𝑟 in the direct contribution.
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Figure 3: Schematic description of the factorisation of the direct contribution, see text.

3. Bare factorisation theorem and endpoint divergences

The derivation of the factorisation theorem follows the standard approach [22–24]. We first per-
form the soft decoupling transformation [25], but we do not use a new notation for the hardcollinear
fields after decoupling. The decay rate is obtained from the imaginary part of the current-current
correlator. The states factorise and thus allow taking matrix elements separately in hardcollinear,
anti-hardcollinear and soft sectors. The hardcollinear matrix elements lead to jet functions. Inte-
gration of the anti-hardcollinear fields at the amplitude level leads to antihardcollinear (radiative)
jet functions. We can then simplify the Dirac and colour structure, and the remaining soft matrix
element defines the shape functions.

For the direct contribution we find the bare factorisation theorem on the operator level (see
Figure 3 for a schematic description):

𝑑Γ

𝑑𝐸𝛾

= N𝐵

∫ 1

0
𝑑𝑢CB1 (mb, u)

∫ 1

0
𝑑𝑢′CB1∗ (mb, u′)

∫ Λ

−𝑝+

𝑑𝜔 J (MB (p+ + 𝜔) , u, u′)S (𝜔) (7)

N𝐵 is a prefactor 2. The hard function CB1 is given at LO in the last section as a result of the
matching of QCD on SCET. The hardcollinear jet function is a genuine next-to-leading (NLP)
object. We define it as a vacuum matrix element of a product of hardcollinear fields:

J
(
p2, u, u′

)
=

(−1)
2𝑁𝑐

1
2𝜋

∫
𝑑𝑡𝑑𝑡′

(2𝜋)2 𝑑
4𝑥 𝑒−𝑖𝑚𝑏 (𝑢𝑡−𝑢′𝑡 ′ )+𝑖 𝑝𝑥 (8)

Disc
[
⟨0| 𝑡𝑟

[
1 + /𝑣

2
(1 − 𝛾5) /Aℎ𝑐⊥ (𝑥) 𝛾𝜈⊥𝜒ℎ𝑐 (𝑡′�̄� + 𝑥) 𝜒ℎ𝑐 (𝑡�̄�) 𝛾𝜈⊥ /Aℎ𝑐⊥ (0) (1 + 𝛾5)

]
|0]⟩

]
.

The soft function - the leading power (LP) shape function - is defined as [26]

S (𝜔) = 1
2𝑚𝐵

∫
𝑑𝑡

2𝜋
𝑒−𝑖𝜔𝑡 ⟨𝐵| ℎ (𝑡𝑛) 𝑆𝑛 (𝑡𝑛) 𝑆†𝑛 (0) ℎ (0) |𝐵⟩ . (9)

2N𝐵 = 𝑒2𝑄2
𝑠
𝐸𝛾

2𝜋

5
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with soft Wilson lines denoted by 𝑆.
There is an endpoint divergence in the convolution of the hard matching coefficients and the

jet function within the direct contribution. At LO, one finds explicitly with the hard matching
coefficient CB1

LO (mb, u) given in Eq. 6 and the LO jet function given by 3

J
(
p2, u, u′

)
= 𝐶𝐹

𝛼𝑠

4𝜋 𝑚𝑏

𝜃 (𝑝2) 𝐴(𝜖) 𝛿(𝑢 − 𝑢′)𝑢1−𝜖 (1 − 𝑢)−𝜖

(
𝑝2

𝜇2

)−𝜖

(10)

that the convolution of both quantities. diverges in the 𝑢 → 0 limit:∫ 1

0

𝑑𝑢

𝑢

∫ 1

0

𝑑𝑢′

𝑢′
𝛿(𝑢 − 𝑢′)𝑢1−𝜖 ≈

∫ 1

0

𝑑𝑢

𝑢1+𝜖 . (11)

Consequently, due to endpoint divergences, the bare factorisation formula of the direct contribution
is already invalid for the 𝑑 → 4 limit at LO.

For the resolved contribution we find the following factorisation theorem on the operator
level (for a schematic description of the factorisation of the resolved contribution see Figure 4):

𝑑Γ

𝑑𝐸𝛾

= N𝐴

��CA0 (mb)
��2 ∫ Λ

−𝑝+

𝑑𝜔 Jg (mb (p+ + 𝜔))
∫
𝑑𝜔1

∫
𝑑𝜔2 J (𝜔1) J∗ (𝜔2) S (𝜔, 𝜔1, 𝜔2) , (12)

with the prefactor N𝐴 = N𝐵 ≡ N . The hard function CA is given at LO in the last section as a result
of the matching of QCD on SCET again. In the hardcollinear sector, there are only gluon fields, so
the standard LO gluon jet function Jg(p2) appears. The anti-hardcollinear jet function is defined on
the amplitude level because there is no energetic particle emitted in the anti-hardcollinear directions
besides the photons:

O𝑇 𝜉𝑞 = 𝑖

∫
𝑑𝑑𝑥𝑇

[
L𝜉𝑞 (𝑥) ,O𝐴0

8𝑔 (0)
]

=

∫
𝑑𝜔

∫
𝑑𝑡

2𝜋
𝑒−𝑖𝑡𝜔 [𝑞𝑠]𝛼 (𝑡𝑛)

[
J (𝜔)

]a 𝜈𝜇

𝛼𝛽
𝑄𝑠 B𝜈

ℎ𝑐⊥ (0) A𝜇 𝑎

ℎ𝑐⊥ (0) [ℎ (0)]𝛽 . (13)

One can prove that the antihardcollinear jet function has a unique structure to all orders in 𝛼𝑠:[
J (𝜔)

]a 𝜈𝜇

𝛼𝛽
= 𝐽 (𝜔) 𝑡𝑎

[
𝛾𝜈⊥𝛾

𝜇
⊥
/̄𝑛/𝑛
4

]
𝛼𝛽

, (14)

Finally, the soft function is given by

S (u, t, t′) = (𝑑 − 2)2𝑔2
𝑠 ⟨𝐵| ℎ (𝑢𝑛) (1 − 𝛾5)

[
𝑆𝑛 (𝑢𝑛) 𝑡𝑎𝑆†𝑛 (𝑢𝑛)

]
𝑆�̄� (𝑢𝑛) 𝑆†�̄� (𝑡

′�̄� + 𝑢𝑛) (15)
/𝑛/̄𝑛
4
𝑞𝑠 (𝑡′�̄� + 𝑢𝑛) 𝑞𝑠 (𝑡�̄�)

/̄𝑛/𝑛
4
𝑆�̄� (𝑡�̄�) 𝑆

†
�̄�
(0)

[
𝑆𝑛 (0) 𝑡𝑎𝑆†𝑛 (0)

]
(1 + 𝛾5) ℎ (0) |𝐵⟩ / (2𝑚𝐵) .

The Fourier transform is defined as

S (𝜔, 𝜔1, 𝜔2) =
∫

𝑑𝑢

2𝜋
𝑒−𝑖𝑢𝜔

∫
𝑑𝑡

2𝜋
𝑒−𝑖𝑡𝜔1

∫
𝑑𝑡′

2𝜋
𝑒𝑖𝑡

′𝜔2S (u, t, t′) . (16)

3𝐴(𝜖) is a function which is finite for 𝜖 → 0.

6
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Figure 4: Schematic description of the factorisation of the resolved contribution, see text.

At LO the factorization formula is well behaved as long as 𝜔1, 𝜔2 ∼ 𝜔 :

𝑑Γ

𝑑𝐸𝛾

= 2N𝐴

��CA0
LO (mb)

��2∫ Λ

−𝑝+

𝑑𝜔 𝛿 (mb (p+ + 𝜔))
∫ ∞

−∞
𝑑𝜔1

∫ 𝜔1

−∞
𝑑𝜔2

1
(𝜔1 − 𝑖𝜖)

1
(𝜔2 + 𝑖𝜖)

S (𝜔, 𝜔1, 𝜔2).

(17)
However, for 𝜔1,2 ≫ 𝜔, the soft function can be shown to be asymptotically constant, which leads
to endpoint divergence in the convolution integrals of jet and shape functions for large 𝜔1,2.

In this limit, the soft strange quarks become hardcollinear and can be decoupled from the soft
gluons. This way, the soft function reduces to the LP shape function, which also occurs in the direct
contribution. This can be shown explicitly taking into account that the 𝜔1,2 → ∞ limit corresponds
to the 𝑡, 𝑡′ → 0 limit in Eq. 15. In fact, the soft function in the limit 𝜔1,2, denoted by S̃, can be
matched on the LP shape function with a perturbative kernel 𝐾:

S̃ (𝜔, 𝜔1, 𝜔2) =
∫

𝑑𝜔′𝐾 (𝜔, 𝜔′, 𝜔1, 𝜔2)S(𝜔′) . (18)

At LO, we find:

S̃ (𝜔, 𝜔1, 𝜔2) = 𝐶𝐹𝐴(𝜖)
𝛼𝑠

(4𝜋) 𝜔
1−𝜖
1 𝛿(𝜔1 − 𝜔2)

∫ Λ

𝜔

𝑑𝜔′ S(𝜔′)
(
(𝜔′ − 𝜔)
𝜇2

)−𝜖

, (19)

which includes the leading power shape function S(𝜔).
This makes the endpoint divergence in the convolution integral of jet and shape function within

the resolved contribution in the asymptotic limit 𝜔1,2 → ∞ manifest. In this limit, the resolved
contribution at LO can be written as:

𝑑Γ

𝑑𝐸𝛾

|asy
𝐴

= 2N |CA0
LO(mb) |2

∫ Λ

−𝑝+

𝑑𝜔JLO
g (mb(p+ + 𝜔))

∫ ∞

𝑚𝑏

𝑑𝜔1JLO(𝜔1)
∫ 𝜔1

0
𝑑𝜔2J∗LO(𝜔2) S̃(𝜔, 𝜔1, 𝜔2)

= N|CA0
LO (mb) |2

𝛼𝑠𝐶𝐹

(4𝜋) 𝑚𝑏

1
𝜖
𝐴(𝜖)

∫ Λ

−𝑝+

𝑑𝜔SLO(𝜔′)
(
𝑚𝑏 (𝜔 + 𝑝+)

𝜇2

)−𝜖

. (20)
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4. Refactorisation to all orders in 𝛼𝑠

Evaluating the direct contribution in the asymptotic limit 𝑢, 𝑢′ → 0 (before integration)

𝑑Γ

𝑑𝐸𝛾

|𝑢,𝑢
′→0

𝐵
= −N

��CA0
LO (mb)

��2 𝛼𝑠𝐶𝐹

(4𝜋) 𝑚𝑏

1
𝜖
𝐴(𝜖)

∫ Λ

−𝑝+

𝑑𝜔SLO(𝜔)
(
𝑚𝑏 (𝜔 + 𝑝+)

𝜇2

)−𝜖

, (21)

and comparing with the asymptotic limit (𝜔1, 𝜔2 → ∞) of the resolved contribution given in Eq. 20
one verifies at LO

𝑑Γ

𝑑𝐸𝛾

|asy
𝐴

= (−1) 𝑑Γ
𝑑𝐸𝛾

|𝑢,𝑢
′→0

𝐵
. (22)

Thus, the sum of the two terms is finite and equal to zero, and the endpoint divergences cancel. This
reflects the fact that in the limits 𝑢 → 0 and 𝜔1 ∼ 𝜔2 ≫ 𝜔 the two terms of the subleading O8 −O8
contribution have the same structure. This LO result is a special case of the all-order relation which
can be formulated at the operator level.

One can derive three refactorisation conditions which reflect this fact that in the limits
𝑢 ∼ 𝑢′ ≪ 1 and 𝜔1 ∼ 𝜔2 ≫ 𝜔 the resolved and the direct contribution have the same struc-
ture to all orders in 𝛼𝑠. The refactorisation relations are operatorial relations that then guarantee
the cancellation of endpoint divergences between the two terms to all orders in 𝛼𝑠 as we will see
below.

• We find that in the limit 𝑢 → 0, the matching coefficient can be further factorised�
CB1 (mb, u)

�
= (−1)CA0 (mb) 𝑚𝑏 J (umb) , (23)

where ⟦𝑔(𝑢)⟧ only denotes the leading term of a function 𝑔(𝑢) in the limit 𝑢 → 0 and without
any higher power corrections in 𝑢 ≪ 1.

• We find the new soft function S̃ (𝜔, 𝜔1, 𝜔2) which corresponds to the function S (𝜔, 𝜔1, 𝜔2)
in the limit 𝜔1 ∼ 𝜔2 ≫ 𝜔. In this limit, we can consider the light soft quarks to be hard-
collinear. In this function S̃ (𝜔, 𝜔1, 𝜔2) higher power corrections in 𝜔/𝜔1,2 are neglected.

• We find that the jet function 𝐽 (𝑚𝑏 (𝑝+ + 𝜔) , 𝑢, 𝑢′) fulfills the following relation in the limit
𝑢 → 0 and 𝑢′ → 0:∫ Λ

−𝑝+

𝑑𝜔 ⟦J (mb (p+ + 𝜔) , u, u′)S(𝜔)⟧ =

∫ Λ

−𝑝+

𝑑𝜔Jg(mb(p+ + 𝜔))S̃(𝜔,mbu,mbu′) , (24)

where the brackets indicate that the 𝑢 → 0 and 𝑢′ → 0 limits have to be taken.

Using these all-orders refactorisation conditions we then can cast the two asymptotic subtraction
terms into the following form:

0 = 2N
��CA0 (𝑚𝑏)

��2 ∫ Λ

−𝑝+

𝑑𝜔Jg (mb (p+ + 𝜔))
∫ ∞

𝑚𝑏

𝑑𝜔1J (𝜔1)
∫ 𝜔1

0
𝑑𝜔2J∗ (𝜔2)S̃ (𝜔, 𝜔1, 𝜔2)

+ 2N
∫ 1

0
𝑑𝑢

�
CB1 (mb, u)

�∫ 1

𝑢

𝑑𝑢′
�
CB1∗ (mb, u′)

�∫ Λ

−𝑝+

𝑑𝜔 ⟦J (mb (p+ + 𝜔) , u, u′)S(𝜔)⟧ . (25)
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We then subtract these asymptotic terms from the sum of the two all-order bare factorisation
theorems for resolved and direct contribution derived in the last section (see Eqs. 7 and 12) and
obtain the endpoint finite factorisation theorem.

𝑑Γ

𝑑𝐸𝛾

|𝐴+𝐵 = 2N
∫ Λ

−𝑝+

𝑑𝜔

{
Jg(mb(p+ + 𝜔))

��CA0 (mb)
��2 (26)

×
∫ ∞

−∞
𝑑𝜔1

∫ 𝜔1

−∞
𝑑𝜔2J(𝜔1) J∗(𝜔2)

[
S (𝜔, 𝜔1, 𝜔2) − 𝜃 (𝜔1 − 𝑚𝑏)𝜃 (𝜔2)S̃(𝜔, 𝜔1, 𝜔2)

]
+
∫ 1

0
𝑑𝑢

∫ 1

𝑢

𝑑𝑢′
[
CB1 (mb, u) CB1∗ (mb, u′) J (mb (p+ + 𝜔) , u, u′)S (𝜔)

−
�
CB1 (mb, u)

� �
CB1∗ (mb, u′)

�
⟦J (mb (p+ + 𝜔) , u, u′)S(𝜔)⟧

]}
,

At this point, the convolutions integrals in the 𝐴- and 𝐵-type contributions are no longer divergent,
and we can renormalise the functions entering the factorisation theorem and take the limit 𝑑 → 4.
In a final step, we are able to show that endpoint reshuffling and renormalisation effectively
commute [17].
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