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1. Introduction

The rare �̄�𝑠 → 𝜇+𝜇− decay is of strong interest from a phenomenological point of view. Since
the decay amplitude at leading-order stems only from the operator O10 it is possible to constrain the
new physics contributions to the C10 Wilson coefficient. The decay rate can be measured precisely
due to its leptonic nature. Recent results are published in Ref. [1–3]. On the theory side the
transition 𝑏 → 𝑠ℓ+ℓ− is a flavor-changing neutral current and hence loop-induced. Very precise
predictions have been calculated, including higher-order QCD and electroweak corrections [4–7].
In Ref. [8, 9] at the level of intended precision also non local QED corrections have been calculated.
Comparing theoretical and experimental results is therefore a very precise test of the Standard
Model (SM) of particle physics and allows also for the search of physics beyond the SM. With these
characteristics the process �̄�𝑠 → 𝜇+𝜇− is complementary to other decay modes like �̄� → 𝑋𝑠𝛾 and
𝐵 → 𝐾 (∗)ℓℓ. This letter is based on our article in Ref. [10].

2. The �̄�𝑠 → 𝜇+𝜇−ecay amplitude

Starting from the SM and integrating out heavy bosons 𝑊 , 𝑍 , 𝐻 and the heavy top-quark,
one arrives at the so-called effective weak Hamiltonian. The most important operators for the
�̄�𝑠 → 𝜇+𝜇− process are [11],

O10 = (𝑠𝛾𝜇𝑃𝐿𝑏) ( �̄�𝛾𝜇𝛾5𝜇) ,
O9 = (𝑠𝛾𝜇𝑃𝐿𝑏) ( �̄�𝛾𝜇𝜇) ,

O7 =
𝑒

16𝜋2𝑚𝑏 (𝑠𝐿𝜎𝜇𝜈𝑏𝑅)𝐹
𝜇𝜈 .

At leading order only the operator O10 contributes. At this level the hadronic uncertainty to the
decay amplitude stems from the decay constant 𝑓𝐵𝑠

. Furthermore, one finds a helicity suppression,
which is evident in the decay amplitude with a linear muon mass 𝑚. To calculate QED corrections
at one-loop order one has to take into account photon exchange between the light particles of
the process. Together with the O10 operator of the tree-level diagram, the O9 and O7 operators
then do contribute at this order [8, 9]. The helicity suppression becomes lifted by the strange-
quark propagator and the decay amplitude contains a single-logarithmic enhancement from the
O9 and a double-logarithmic enhancement from the O7 operator. Thus, QED effects can become
phenomenologically relevant, but nethertheless remain small due to a supression in 𝛼. In this
work we focus on the electric dipole operator O7. The effects coming from this operator are
particulary interesting to study. The O7 contribution, which is diagrammatically shown in Fig. 1,
is also of importance from a conceptual point of view. By the exchange of the photon the decay
amplitude becomes sensitive to the momentum distribution of the light quark inside the �̄�𝑠-meson.
Calculating the diagram in Fig. 1 with the method of regions [12, 13] leads to endpoint divergent
convolution integrals. These endpoint divergences have to be regularised by rapidity regulators.
We studied intensively the cancellation of the endpoint poles between the different momentum
regions depending on the choice of the regulator. One of the endpoint configurations of the muon
propagator results in the already mentioned double-logarithmic enhancement. Endpoint divergent
convolution integrals make the formulation of a factorization theorem non-trivial. In our work we
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Figure 1: Leading order QED box diagram that contributes to the �̄�𝑠 → 𝜇+𝜇− decay amplitude from the
operator O7. There exists a second diagram with the crossed photons, that is not shown in this figure.

provided a factorization theorem for the O7 contribution that is free of endpoint divergences and
valid to all orders in QCD. In the context of QCD factorization the topic of endpoint-logarithms
is a very much discussed topic in recent times, see e.g. [14–21]. We were able to calculate the
leading-logarithmic QCD corrections using renormalization group improved pertubation theory.

3. O7ontribution to the decay amplitude

The QED correction at O(𝛼) to the �̄�𝑠 → 𝜇+𝜇− decay amplitude has already been calculated
and can be found in Ref. [8]. For our work the relevant part of the decay amplitude, that stems from
the operator O7 can be written in the form

𝑖M(�̄�𝑠 → 𝜇+𝜇−)
���LO

O7
= − 𝛼

2𝜋
𝑄2
ℓ 𝑄𝑠 𝐶

eff
7 𝑚 𝑀 𝑓𝐵𝑠

N [�̄�(𝑝) (1 + 𝛾5) 𝑣(𝑝′)] F LO(𝐸, 𝑚) , (1)

with the constant

N = 𝑉𝑡𝑏 𝑉
∗
𝑡𝑠

4𝐺𝐹√
2

𝛼

4𝜋
. (2)

The corresponding diagram is shown in Fig. 1, where all hadronic information is included in the
form factor

F LO(𝐸, 𝑚) =

∫ ∞

0

𝑑𝜔

𝜔
𝜙+(𝜔)

[
1
2

ln2 𝑚2

2𝐸𝜔
+ ln

𝑚2

2𝐸𝜔
+ 𝜋

2

3

]
. (3)

This form factor consists of the so-called light cone distribution amplitude (LCDA) of the �̄�𝑠-meson
𝜙+(𝜔), which shows that through the QED correction the process is sensitive to the momentum
distribution of the spectator quark in the �̄�𝑠-meson. The argument of the LCDA is the light-cone
projection of the strange-quark momentum 𝑙 (compare to Fig. 1) which has the power counting
⟨𝜔⟩ ∼ O(Λhad).
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region muon upper photon 𝑠-quark lower photon regulator
ℎ𝑐 𝑘 ∼ (𝜆2, 𝜆, 1) 𝑞 ∼ (1, 𝜆, 1) 𝑘 ′ ∼ (𝜆2, 𝜆, 1) 𝑞′ ∼ (𝜆2, 𝜆, 1) R𝑎,𝑏
𝑐 𝑘 ∼ (𝜆4, 𝜆2, 1) 𝑞 ∼ (1, 𝜆2, 1) 𝑘 ′ ∼ (𝜆2, 𝜆2, 1) 𝑞′ ∼ (𝜆4, 𝜆2, 1) R𝑎,𝑏
𝑠 𝑘 ∼ (𝜆2, 𝜆2, 𝜆2) 𝑞 ∼ (1, 𝜆2, 𝜆2) 𝑘 ′ ∼ (𝜆2, 𝜆2, 1) 𝑞′ ∼ (𝜆2, 𝜆2, 1) R𝑎,𝑏
𝑠𝑐 𝑘 ∼ (𝜆3, 𝜆2, 𝜆) 𝑞 ∼ (1, 𝜆2, 𝜆) 𝑘 ′ ∼ (𝜆2, 𝜆2, 1) 𝑞′ ∼ (𝜆3, 𝜆2, 1) R𝑏

Table 1: In this table we show the relevant impulse regions for all propagators that contribute to the
diagram in Fig. 1. The anti-soft-collinear region only contributes if the regulator (b) is chosen. The
power-counting of the three different momentum components in the light-cone notation takes the form
{(�̄� · 𝑘), 𝑘⊥, (𝑛 · 𝑘)} ∼ (𝜆𝑎, 𝜆𝑏, 𝜆𝑐) 𝑚𝑏. From this we derive the short-hand notation 𝑘𝜇 ∼ (𝜆𝑎, 𝜆𝑏, 𝜆𝑐)
used in this table and throughout the letter.

4. Momentum regions in the 1-Loop QED diagram

In this section we calculate the diagram shown in Fig. 1 using the method of regions approach.
For this purpose we introduce light-cone coordinates for the muon momentum,

𝑘𝜇 = (𝑛 · 𝑘) 𝑛
𝜇

2
+ (𝑛 · 𝑘) 𝑛

𝜇

2
+ 𝑘𝜇⊥

with 𝑛2 = �̄�2 = 0 and 𝑛 · �̄� = 2. In this process there is a hard scale (�̄� · 𝑝) = (𝑛 · 𝑝′) ≃ 2𝐸 = 𝑀 ,
where 𝐸 is the energy of the muons in the �̄�𝑠 rest frame and 𝑀 the meson mass. The soft scale
in this process is the intrinsic QCD scale ΛQCD. The projection of the strange-quark momentum
𝜔 = (�̄� · ℓ) and the muon mass 𝑚 are counted to be of this power. In the spirit of the method of
regions we define a small expansion parameter 𝜆 by

𝜆2 =
𝑚2

2𝐸𝜔
∼ O

(
ΛQCD

𝑚𝑏

)
∼ O

(
𝑚𝜇

𝑚𝑏

)
. (4)

The different regions that have to be considered are summarized in Table 1. By expanding the
loop integral into the different regions additional divergences - the so-called endpoint divergences
- show up, which must be regularized. To do so, one can choose different options. Two possible
options are:

option (a) : R𝑎 (𝑘) =
(

𝜈2

−(𝑛 · 𝑘) (�̄� · 𝑙) + 𝑖0

) 𝛿
, (5)

option (b) : R𝑏 (𝑘) =
(

𝜈2

(�̄� · 𝑘) (𝑛 · 𝑝′) − (𝑛 · 𝑘) (�̄� · 𝑙) + 𝑖0

) 𝛿
. (6)

Note, that depending on the choice different sets of regions have to be calculated. If one decides on
option (a) the regions anti-hard-collinear ℎ𝑐, anti-collinear 𝑐 and soft 𝑠 contribute. With option (b)
additionally the region anti-soft-collinear 𝑠𝑐 has to be calculated to obtain the correct result for the
diagram in Eq. (3).

From Table 1 we find, that the virtuality is in all momentum regions (𝑘 ′)2 ∼ 𝜆2. Because
of this, we can already simplify the strange-quark propagator (third propagator in the following
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equation) and can write the loop-integral in the form

𝐼 (𝜔) =
∫
𝑑 (�̄� · 𝑘)

∫
𝑑 (𝑛 · 𝑘)

∫
𝑑𝑘⊥ · 1

(𝑝 − 𝑘)2 + 𝑖0
· 1
(𝑝′ + 𝑘)2 + 𝑖0

× (2𝐸 + 𝑛 · 𝑘) 2𝐸𝜔
(2𝐸 + 𝑛 · 𝑘) (�̄� · 𝑘 − 𝜔) + 𝑘2

⊥ + 𝑖0
· 2𝐸 + 𝑛 · 𝑘
(𝑛 · 𝑘) (�̄� · 𝑘) + 𝑘2

⊥ − 𝑚2 + 𝑖0

�����
leading power

.

(7)

This integral will simplify further by expanding it to leading power for the different momentum
regions. In the following we choose rapidity regulator (a).

4.1 The anti-hard-collinear region

The anti-hard-collinear region is given by the momentum scaling 𝑘 ∼ (𝜆2, 𝜆, 1). Expanding
the integral in Eq. (7) in this region we find at leading power in 𝜆:

𝐼
ℎ𝑐
(𝜔) =

∫
𝑑 (�̄� · 𝑘)

∫
𝑑 (𝑛 · 𝑘)

∫
𝑑𝑘⊥

× 1
−2𝐸 (𝑛 · 𝑘) + 𝑖0 · 1

(2𝐸 + 𝑛 · 𝑘) (�̄� · 𝑘) + 𝑘2
⊥ + 𝑖0

× (2𝐸 + 𝑛 · 𝑘) 2𝐸𝜔
(2𝐸 + 𝑛 · 𝑘) (�̄� · 𝑘 − 𝜔) + 𝑘2

⊥ + 𝑖0
· 2𝐸 + 𝑛 · 𝑘
(𝑛 · 𝑘) (�̄� · 𝑘) + 𝑘2

⊥ + 𝑖0
.

(8)

Performing first the (�̄� · 𝑘) integration by using the residue theorem and afterwards the 𝑘⊥ integral,
we find with (𝑛 · 𝑘) = −2 𝐸 𝑢 for the convolution integral,

𝐼
ℎ𝑐
(𝜔) =

∫ 1

0

𝑑𝑢

𝑢
𝐻

(0)
1 (𝑢) 𝐽 (1)1 (𝑢;𝜔) , (9)

where 𝐻 (0)
1 (𝑢) = 1 is the leading-order value of the hard SCET-function (hard matching coefficient

for the 𝑏 → 𝑠𝛾 tensor current with an energy transfer (1 − 𝑢)𝐸) and

𝐽
(1)
1 (𝑢;𝜔) = −Γ(𝜖)

(
𝜇2𝑒𝛾𝐸

2𝐸𝜔𝑢(1 − 𝑢)

) 𝜖
(1 − 𝑢) (10)

is the jet-function at leading-order. The endpoint divergence in this region stems from the eikonal
photon propagator und shows up as the 1/𝑢 term in the convolution integral. Note, that the endpoint
divergence is already regularized by the dimensional regulator 𝜖 through the 𝑢−𝜖 term in the jet
function. For this reason no additional rapidity regulator is needed and we can set 𝛿 to zero.
Integrating over the remaining momentum fraction 𝑢 and expanding in 𝜖 one finds

𝐼
ℎ𝑐
(𝜔) = 1

𝜖2 + 1
𝜖

ln
𝜇2

2𝐸𝜔
+ 1

2
ln2 𝜇2

2𝐸𝜔
− 𝜋2

12
+ 1
𝜖
+ ln

𝜇2

2𝐸𝜔
+ 2 . (11)
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4.2 The anti-collinear region

The anti-collinear region is given by the momentum scaling 𝑘 ∼ (𝜆4, 𝜆2, 1). Expanding the
integral in Eq. (7) in this region we find at leading power in 𝜆:

𝐼�̄� (𝜔) =
∫
𝑑 (�̄� · 𝑘)

∫
𝑑 (𝑛 · 𝑘)

∫
𝑑𝑘⊥

× 1
−2𝐸 (𝑛 · 𝑘) + 𝑖0 · 1

(2𝐸 + 𝑛 · 𝑘) (�̄� · 𝑝′ + �̄� · 𝑘) + 𝑘2
⊥ + 𝑖0

× 2𝐸𝜔
−𝜔 + 𝑖0 · 2𝐸 + 𝑛 · 𝑘

(𝑛 · 𝑘) (�̄� · 𝑘) + 𝑘2
⊥ − 𝑚2 + 𝑖0

(
𝜈2

−𝜔 (𝑛 · 𝑘) + 𝑖0

) 𝛿
.

(12)

Again we perform first the (�̄� · 𝑘) and afterwards the 𝑘⊥ integral. With (𝑛 · 𝑘) = −2 𝐸 𝑢 the result
can be written as

𝐼𝑐 (𝜔) = 𝐽
(0)
2 (1, 𝜔)

∫ 1

0

𝑑𝑢

𝑢
𝐻

(0)
1 (𝑢) �̄� (1) (𝑢;𝜔) , (13)

where we defined the leading-order term in the jet function for the anti-hard-collinear strange-quark
propagator with (�̄� · 𝑘 ′) = 𝑧 𝜔,

𝐽
(0)
2 (𝑧, 𝜔) =

1
𝑧
, (14)

such that the overall factor 1/𝜔 – that appears in the convolution with the �̄�𝑠-meson LCDA – has
been factored out. At leading order the collinear function is defined as

�̄� (1) (𝑢;𝜔) = Γ(𝜖)
(
𝜇2𝑒𝛾𝐸

𝑚2

) 𝜖 (
𝜈2

2𝐸𝜔

) 𝛿
(1 − 𝑢)1−2𝜖 𝑢−𝛿 . (15)

In the convolution integral again an endpoint divergence 1/𝑢 from the eikonal photon propagator
shows up. The endpoint divergence is not regulated without the rapidity regulator 𝛿, so we need to
keep the term 𝑢−𝛿 in the collinear function. Integrating the last momentum fraction integral 𝑢 and
then expanding the result first in 𝛿 and afterwards in 𝜖 we find

𝐼𝑐 (𝜔) =

(
−1
𝛿
− ln

𝜈2

2𝐸𝜔

) (
1
𝜖
+ ln

𝜇2

𝑚2

)
+ 𝜋

2

3
− 1
𝜖
− ln

𝜇2

𝑚2 − 2 . (16)

4.3 The soft region

The soft region is given by the momentum scaling 𝑘 ∼ (𝜆2, 𝜆2, 𝜆2). Expanding the integral in
Eq. (7) in this region we find at leading power in 𝜆:

𝐼𝑠 (𝜔) =
∫

𝑑 (�̄� · 𝑘)
∫

𝑑 (𝑛 · 𝑘)
∫

𝑑𝑘⊥ · 1
−2𝐸 (𝑛 · 𝑘) + 𝑖0 · 1

2𝐸 (�̄� · 𝑘) + 𝑖0

× 2𝐸𝜔
�̄� · 𝑘 − 𝜔 + 𝑖0 · 2𝐸

(𝑛 · 𝑘) (�̄� · 𝑘) + 𝑘2
⊥ − 𝑚2 + 𝑖0

R𝑎 (𝑘) ,
(17)

In this region we can perform first the 𝑘⊥ integration. Afterwards we have to examine the analytic
structure in the (�̄� · 𝑘)-plane and consider the poles and cuts respectively. After this procedere, one
ends up with

𝐼𝑠 (𝜔) = 𝐻 (0)
1 (0)

∫ ∞

0

𝑑𝑢

𝑢

∫ ∞

0

𝑑𝜌

𝜌
𝑆 (1) (𝑢, 𝜌;𝜔) 𝐽 (0)2 (1 + 𝜌, 𝜔) . (18)
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Here we find with (𝑛 · 𝑘) = −2 𝐸 𝑢 and (�̄� · 𝑘) = −𝜔 𝜌 the same jet function as already defined in
the anti-collinear region and a soft function

𝑆 (1) (𝑢, 𝜌;𝜔) = 𝜃 (𝑢𝜌 − 𝜆2)
(
𝜇2𝑒𝛾𝐸

2𝐸𝜔

) 𝜖 (
𝜈2

2𝑢𝐸𝜔

) 𝛿 (𝑢𝜌 − 𝜆2)−𝜖
Γ(1 − 𝜖) , (19)

originating from the discontinuity of the muon propagator. The convolution integral is again
endpoint divergent, which stems from small values (𝑛 · 𝑘) and (�̄� · 𝑘) in the two eikonal photon
propagators. This shows up as the 1/𝑢 and 1/𝜌 terms in the convolution integrals and again leads to
the fact, that we have to keep the rapidity regulator 𝛿. After calculating the remaining longitudinal
integrals and afterwards expanding first in 𝛿 and subsequently in the dimensional regulator 𝜖 , we
find

𝐼𝑠 (𝜔) =

(
1
𝛿
+ ln

𝜈2

𝑚2

) (
1
𝜖
+ ln

𝜇2

𝑚2

)
− 1
𝜖2 − 1

𝜖
ln
𝜇2

𝑚2 − 1
2

ln2 𝜇
2

𝑚2 + 𝜋
2

12
. (20)

4.4 Total result for the 1-Loop QED diagram

As already stated, the total result of the diagram in Fig. 1 together with rapidity regulator (a)
is given by the sum of the anti-hard-collinear, the anti-collinear, and the soft region, which leads to
the net result

𝐼 (𝜔) = 𝐼
ℎ𝑐
(𝜔) + 𝐼𝑐 (𝜔) + 𝐼𝑠 (𝜔) =

1
2

ln2 𝑚2

2𝐸𝜔
+ ln

𝑚2

2𝐸𝜔
+ 𝜋

2

3
. (21)

All poles in 𝜖 and 𝛿 cancel out and we reproduce the result shown in the form factor in Eq. (3).
Note the double-logarithmic enhancement and the single-logarithmic term. The single-logarithmic
enhancement stems from the cancellation of the 1/𝜖 poles between the anti-collinear and the
anti-hard-collinear regions.

5. The bare QCD factorization theorem

The starting point to render the convolution integrals endpoint finite, is the so-called bare
QCD factorization theorem. The form factor F (𝐸, 𝑚) is the sum of the convolution integral of the
anti-hard-collinear ℎ𝑐, the anti-collinear 𝑐 and the soft 𝑠 region. This leads to the expression

F (𝐸, 𝑚) =

∫ ∞

0

𝑑𝜔

𝜔
𝜙+(𝜔)

{ ∫ 1

0

𝑑𝑢

𝑢
𝐻1(𝑢) 𝐽1(𝑢;𝜔)

+ 𝐽2(1, 𝜔)
∫ 1

0

𝑑𝑢

𝑢
𝐻1(𝑢) �̄� (𝑢;𝜔)

+ 𝐻1(0)
∫ ∞

0

𝑑𝑢

𝑢

∫ ∞

0

𝑑𝜌

𝜌
𝑆(𝑢, 𝜌;𝜔) 𝐽2(1 + 𝜌, 𝜔)

}
bare

. (22)

Every line in this QCD factorization theorem contains endpoint divergent convolutions, which are
regulated by finite 𝜖 and 𝛿. To include QCD corrections to the process on the quark side of the
diagram in Fig. 1 we write the SCET functions as

𝐻1(𝑢) = 𝐻 (0)
1 (𝑢) + O(𝛼𝑠) , (23)

𝐽1(𝑢;𝜔) = 𝐽 (1)1 (𝑢;𝜔) + O(𝛼𝑠) , (24)

𝐽2(𝑧) = 𝐽 (0)2 (𝑧) + O(𝛼𝑠) , (25)
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with 𝐻 (0)
1 (𝑢) = 1, and 𝐽 (1)1 (𝑢;𝜔), 𝐽 (0)2 (𝑧) given in Eqs. (10) and (14), respectively. The collinear

function �̄� (𝑢;𝜔) and the soft function 𝑆(𝑢, 𝜌;𝜔) cannot include any QCD corrections due to the
fact, that they stem from photon propagators and the muon propagator. Not included into this
factorization theorem are QED corrections from the subprocess 𝛾∗𝛾∗ → 𝜇+𝜇−, so we set the
functions �̄� (𝑢;𝜔) and 𝑆(𝑢, 𝜌;𝜔) to their leading order expressions.

6. Construction of the renormalized QCD factorization theorem

Since the total result is, as we have seen above, free of any endpoint divergences, we aim to
rewrite the factorization in such a way, that all lines are free of endpoint divergences. After this
procedure we can get rid of the rapidity regulator before the integrations and set 𝛿 = 0. This can
be achieved by the so-called refactorization procedure. To perform this, we need as an essential
ingredient the refactorization relation Ref. [16, 17, 20][ [

�̄� (𝑢;𝜔)
] ]

≡ �̄� (𝑢;𝜔)
��
𝑢→0 =

∫ ∞

0

𝑑𝜌

𝜌
𝑆(𝑢, 𝜌;𝜔) + O(𝛼) , (26)

and additionally use the fact, that scaleless integrals vanish in dimensional regularisation∫ ∞

0

𝑑𝑢

𝑢

∫ ∞

0

𝑑𝜌

𝜌
𝑆(𝑢, 𝜌;𝜔) = 0 . (27)

Note, that the refactorization condition is valid for all orders in 𝛼𝑠, but is only valid for the leading
order in 𝛼. Applying these two formulas to the bare factorization theorem we gain the renormalized
factorization theorem

F (𝐸, 𝑚) =

∫ ∞

0

𝑑𝜔

𝜔
𝜙+(𝜔)

{ ∫ ∞

0

𝑑𝑢

𝑢

[
𝐻1(𝑢) 𝐽1(𝑢;𝜔) 𝜃 (1 − 𝑢)

− 𝐻1(0) 𝐽2(1, 𝜔) 𝜃 (𝑢 − 1)
∫ ∞

1

𝑑𝜌

𝜌
𝑆(𝑢𝜌;𝜔)

]
𝜆2→0

+ 𝐽2(1, 𝜔)
∫ 1

0

𝑑𝑢

𝑢

[
𝐻1(𝑢) �̄� (𝑢) − 𝐻1(0)

[ [
�̄� (𝑢)

] ] ]
+ 𝐻1(0)

∫ ∞

0

𝑑𝑢

𝑢

∫ ∞

0

𝑑𝜌

𝜌

[
𝐽2(1 + 𝜌, 𝜔) − 𝜃 (1 − 𝜌) 𝐽2(1, 𝜔)

]
𝑆(𝑢𝜌;𝜔)

+ 𝐽2(1, 𝜔) 𝐻1(0)
∫ 1

0

𝑑𝑢

𝑢

∫ 1

0

𝑑𝜌

𝜌
𝑆(𝑢𝜌;𝜔)

���
𝜆2→0

}
. (28)

We recognize, that the factorization theorem now consists of four lines. All of these lines are free
of endpoint divergences, so the rapidity regulator 𝛿 can be dropped. The last line is new compared
to the bare factorization theorem and contains the double-logarithmic enhancement as

F LO(𝐸, 𝑚)
���
double−log

=

∫
𝑑𝜔

𝜔
𝜙+(𝜔)

1∫
0

𝑑𝑢

𝑢

1∫
0

𝑑𝑣

𝑣
𝜃 (2𝐸𝜔 𝑢𝑣 − 𝑚2) . (29)

This can also be obtained by calculating soft-collinear region 𝑠𝑐 as shown in Table 1 with additional
longitudinal cut-offs [15].
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s(λ2, λ2, λ2)

(1, 0, λ4)

(λ4, 0, 1)

sc(λ3, λ2, λ)

(λ2, λ2, 1)

(1, λ2, λ)

(λ3, λ2, 1)

h(1, 1, 1)

s(λ2, λ2, λ2)

(1, 0, λ4)

(λ4, 0, 1)

sc(λ3, λ2, λ)(λ2, λ, 1)

(1, λ2, λ)

(λ3, λ2, 1)

hc

Figure 2: Here we illustrate the QCD corrections to the double-logarithmic enhancement. The left side
shows the hard corrections the hard function. The right side shows the correction to the strange-quark
propagator.

7. Leading-Logarithmic QCD Corrections

In this section we concentrate on the fourth line of the renormalized QCD factorization theorem.
The aim is to include leading-logarithmic QCD corrections via renormalization group evolution
(RGE). In the so-called dual space for the LCDA,

𝜙+(𝜔) =

∫
𝑑𝜔′

𝜔′

√︂
𝜔

𝜔′ 𝐽1

(
2
√︂
𝜔

𝜔′

)
𝜌+(𝜔′) , (30)

the RGE will be multiplicative [22]. There exist three sources of QCD corrections in the process.
Two of them are shown in Fig. 2. The first are hard corrections to the 𝑏 → 𝑠𝛾∗ vertex (left panel),
the second anti-hard collinear corrections to the strange-quark propagator (right panel), and finally
soft corrections to the LCDA. These corrections are included in the equation

F (𝐸, 𝑚)
���
LL

=
1
2
𝑒𝑉 (𝜇ℎ𝑐 ,𝜇ℎ ) 𝑒𝑉 (𝜇ℎ𝑐 ,𝜇0 )

∫
𝑑𝜔′

𝜔′ ln2 𝑚2

2𝐸�̂�′

(
�̂�0
𝜔′

)−𝑔 (𝜇ℎ𝑐 ,𝜇0 )
𝜌+(𝜔′, 𝜇0) , (31)

which contains the evolution of the functions 𝐻1(0; 𝜇), J̄2(1, 𝜔′; 𝜇) and 𝜌+(𝜔′; 𝜇) via the RGEs.
Here the arbitrary scale 𝜇 drops out as as required by definition. We now define the generating
function for the logarithmic moments of the LCDA 𝜌+(𝜔′; 𝜇0),

𝐹[𝜌+ ] (𝑡; 𝜇0, 𝜇𝑚) =

∫ ∞

0

𝑑𝜔′

𝜔′

(
�̂�𝑚

𝜔′

)−𝑡
𝜌+(𝜔′, 𝜇0) , (32)

from which we can obtain the necessary double-logarithmic term by taking the second derivative
w.r.t. 𝑡. Plugging this into Eq. (31) we find

F (𝐸, 𝑚)
���
LL
=

1
2
𝑒𝑉 (𝜇ℎ𝑐 ,𝜇ℎ )𝑒𝑉 (𝜇ℎ𝑐 ,𝜇0 )

(
2𝐸𝜇0

𝑚2

)−𝑔 (𝜇ℎ𝑐 ,𝜇0 ) 𝑑2

𝑑𝑡2
𝐹[𝜌+ ] (𝑡 + 𝑔(𝜇ℎ𝑐, 𝜇0); 𝜇0,

𝑚2

2𝐸
)
�����
𝑡=0

.

(33)

This equation provides a compact master formula for the form factor including leading-logarithmic
QCD corrections to the double-logarithmic enhancement from the endpoint configuration of the
muon propagator.
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0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.8
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1.4

1.6

Figure 3: Result of the numerical analysis, that shows the RGE leading-logarithmic QCD effect relative to
the QCD tree-level double-logarithmic enhancement.

8. Explicit parametrization and numerical estimation

In order to make numerical predictions from the master formula Eq. (33), we need an explicit
but general parametrization of the LCDA as developed recently in Ref. [23],

𝜌+(𝜔′, 𝜇0) =
𝑒−𝜔0/𝜔′

𝜔′

𝐾∑︁
𝑘=0

(−1)𝑘 𝑎𝑘 (𝜇0)
1 + 𝑘 𝐿

(1)
𝑘

(2𝜔0/𝜔′) , (34)

where the 𝐿 (1)
𝑘

(2𝜔0/𝜔′) are the associated Laguerre polynomials. The generating function for the
logarithmic moments then takes the form,

𝐹[𝜌+ ] (𝑡; 𝜇0, 𝜇𝑚) =
Γ(1 − 𝑡)
𝜔0

(
�̂�𝑚

𝜔0

)−𝑡 𝐾∑︁
𝑘=0

𝑎𝑘 (𝜇0) 2𝐹1(−𝑘, 1 + 𝑡; 2; 2) , (35)

by integrating over 𝜔′. In our analysis we truncate the parametrization at 𝐾 = 2. For this reason
we need the first three hypergeometric functions with negative integers −𝑘 as first argument,

2𝐹1(0, 1 + 𝑡; 2; 2) = 1 ,

2𝐹1(−1, 1 + 𝑡; 2; 2) = −𝑡 ,

2𝐹1(−2, 1 + 𝑡; 2; 2) = 1
3

(
1 + 2𝑡2

)
,

(36)

which have a polynomial structure. Plugging this parametrization into the master formula in Eq. (33)
yields the result for the form factor:

F (𝐸, 𝑚)
���
LL

≃ Γ(1 − 𝑔)
2𝜔0

𝑒𝑉 (𝜇ℎ𝑐 ,𝜇ℎ )+𝑉 (𝜇ℎ𝑐 ,𝜇0 )
(
�̂�0
𝜔0

)−𝑔
×
{(
𝑎0 − 𝑔 𝑎1 +

1 + 2𝑔2

3
𝑎2

) [(
ln �̂�2

0 + 𝜓(1 − 𝑔)
)2

+ 𝜓′(1 − 𝑔)
]

+
(
2𝑎1 −

8
3
𝑔 𝑎2

) (
ln �̂�2

0 + 𝜓(1 − 𝑔)
)
+ 4𝑎2

3

}
≡

2∑︁
𝑘=0

𝑎𝑘 𝑓𝑘 (𝜔0) . (37)
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Here 𝜓 is the digamma function, 𝑎𝑘 = 𝑎𝑘 (𝜇0), 𝑔 = 𝑔(𝜇ℎ𝑐, 𝜇0), and we can define

�̂�2
0 ≡ 𝑚2𝑒2𝛾𝐸

2𝐸𝜔0
.

To estimate the effects of the leading-logarithmic QCD corrections, we use 𝜇0 = 1 GeV, 𝜇ℎ =

5.3 GeV, 𝜇ℎ𝑐 =
√
𝜇ℎ𝜇0 ≃ 2.3 GeV for our numerical analysis. For the strong coupling 𝛼𝑠 the values

𝛼𝑠 (𝜇0) = 0.49 , 𝛼𝑠 (𝜇ℎ) ≃ 0.21 ,

at the relevant scales are used, which leads to

𝑧(𝜇ℎ𝑐, 𝜇ℎ) = 1.30 , 𝑧(𝜇ℎ𝑐, 𝜇0) = 0.65 ,

for 𝑛 𝑓 = 4. This can be used to calculate the RG factors und potentials (see [10] for their definition),

𝑔 ≃ 0.138 and 𝑉 (𝜇ℎ𝑐, 𝜇ℎ) ≃ −0.037 , 𝑉 (𝜇ℎ𝑐, 𝜇0) ≃ −0.053 .

The results of the numerical analysis are shown in Fig. 3. We plot the factors 𝑓𝑘 (𝜔0) in front of the
expansion parameters 𝑎𝑘 (compare to Eq. (37)) in a normalized form according to

𝑓𝑘 (𝜔0) ≡
𝑓𝑘 (𝜔0)

𝑓𝑘 (𝜔0) |𝑔=𝑉=0
, (38)

where for the normalized case we set 𝑔 = 𝑉 = 0. In Fig. 3 we find the impact of the leading-
logarithmic QCD corrections to the corresponding coefficients 𝑎0,1,2 that show up in the explicit
parametrization and in Eq. (33). This effect can maximally be of the order (−15, +30, +10)%,
depending on the scale 𝜔0. The 𝜔0-dependence of the RG evolution originates mostly in the factor
( �̂�0/𝜔0)−𝑔 in Eq. (37). A recent estimate of the numerical size of the coefficients 𝑎0,1,2 for the
parametrization of the LCDA for the 𝐵𝑠 meson can be found in Ref. [24].

9. Summary and outlook

We studied the QCD factorization of the O7 contribution to the �̄�𝑠 → 𝜇+𝜇− decay amplitude.
With the help of the method of regions we calculated the endpoint divergent convolution integrals
and regulated them by adding a rapidity regulator. By summing up all the different momentum
regions we managed to reproduce the already known result for the decay amplitude. It was possible to
identify the specific momentum regions where the double-logarithmic enhancement in a small ratio
of soft and hard scales of the process shows up. We were also able to construct the bare factorization
theorem and perform the refactorization procedure. Hence we could write down the renormalized
QCD factorization theorem for the O7 contribution to the decay amplitude. Then concentrating on
the part of the factorization theorem that contains the double-logarithmic enhancement we included
leading logarithmic QCD corrections using the renormalization group evolution. We were able to
provide a useful master formula for these corrections. Using a parametrization for the light cone
distribution amplitude we provided a numerical analysis to estimate the leading logarithmic QCD
corrections. These can be of O(30%) relative to the leading order 𝛼0

𝑠 contribution. The next steps
should be to calculate the hard and anti-hard-collinear functions at O(𝛼𝑠) fixed order. Additionally,
it would be interesting to conceptually understand the factorization of QED corrections.
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