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1. Introduction

The dark matter (DM) mystery is one of the most intriguing problems of modern cosmology.
We know, that the dark matter is the invisible form of matter which discloses itself through its
gravitational action. An accepted property of DM particles is that they are electrically neutral,
since do not scatter light, so we call them "dark matter", but other their properties are practically
unknown (for review see [1–3]). These facts open possibility for particles of many different types
to be dark matter candidates.

The value of the fractional mass density of dark matter according to observations [4] is:

ΩDM =
ρDM

ρcrit
≈ 0.265. (1)

Here ρcrit is the critical energy density of the universe:

ρcrit =
3H2

0 M2
Pl

8π
≈ 5 keV/cm3, (2)

where MPl = 1.22× 1019 GeV = 2.18× 10−5 g is the Planck mass1 and H0 is the present day value
of the Hubble parameter, for which we took

H0 = 100h km s−1 Mpc−1 ≈ 70 km s−1 Mpc−1. (3)

Thus, the observed dark matter energy density in contemporary universe is equal to:

ρDM = 1 keV/cm3. (4)

The existence of dark matter and the magnitude of DM contribution into the total mass density
of the universe follow from the analysis of several independent pieces of data, which include:

• flat rotational curves around galaxies;

• equilibrium of hot gas in rich galactic clusters;

• the spectrum of the angular fluctuations of CosmicMicrowave Background (CMB)Radiation;

• onset of Large Scale Structure (LSS) formation at the redshift zLSS = 104 prior to hydrogen
recombination at zrec = 1100.

Presently, possible carriers of dark matter are supposed to belong to two distinct groups: mi-
croscopically small (elementary particles) and macroscopically large. The first group is abbreviated
as WIMPs (Weakly Interacting Massive Particles) and contains axions with masses about 10−5 eV
or even smaller, heavy neutral leptons with masses of several GeV, particles of mirror matter, the
so-called superheavy Wimpzillas, the lightest supersymmetric particles, and many others.

The second group is presented by dark matter objects of stellar mass abbreviated as MACHO
(Massive Astrophysical Compact Halo Object) and may include primordial black holes (PBH) with
masses starting from 1020 g up to tenth solar masses, topological or non-topological solitons, and
possible macroscopic objects consisting e.g. from the so-called mirror matter, etc.

1We use the natural system of units with c = k = ~ = 1.
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Until resently, one of the most popular candidates for the role of DM carries was the Light-
est Supersymmetric Particle (LSP) which, according to the low energy minimal supersymmetric
(SUSY) model, should have mass of several hundred GeV, MLSP ∼ 100 - 1000 GeV. With the inter-
action strength typical for this model the cosmological mass density of these particles was predicted
to be close to the observed density of DM. However, an extensive search for supersymmetry at
Large Hadron Collider (LHC) led to negative results. The absence of signal from supersymmetric
partners at LHC, if not excluded, but considerably restricts the parameter space open for SUSY. So
if supersymmetry exists, its characteristic energy scale should be higher than, roughly speaking,
10 TeV.

The cosmological energy density of LSPs is proportional to their mass squared:

ρLSP ∼ ρ
(obs)
DM (MLSP/1 TeV)2, (5)

where ρ(obs)DM ≈ 1 keV/cm3 is the observed value of the cosmological density of DM, see Eq. (4).
For LSP with the mass MLSP ∼ 1 TeV, their energy density, ρLSP, would be of the order of the
observed dark matter energy density. For larger masses LSPs would overclose the universe. These
unfortunate circumstances practically exclude LSPs as DM particles in the conventional cosmology.
However, in (R + R2)-gravity the energy density of LSPs may be much lower [5–7] and this fact
reopens for LSPs the chance to be the constituents of dark matter, if their mass MLSP ≥ 106GeV
(for a review see [8]).

2. Cosmological evolution in R2-gravity

Theory of gravitational interactions, general relativity (GR), based on the Einstein-Hilbert
action:

SEH = −
M2

Pl

16π

∫
d4x
√
−g R, (6)

describes basic properties of the universe in very good agreement with observations. However,
some features of the universe request to go beyond the frameworks of GR. In theories of modified
gravity it is achieved by an addition of a non-linear function of curvature, F(R), into the canonical
action (6).

In 1979 V. T. Gurovich and A. A. Starobinsky suggested to take F(R) proportional to the
curvature squared, R2, for elimination of the cosmological singularity [9]. In the subsequent
paper by Starobinsky [10] it was found that R2-term leads to exponential cosmological expansion
(Starobinsky inflation). The corresponding action has the form:

Stot = −
M2

Pl

16π

∫
d4x
√
−g

[
R −

R2

6M2
R

]
+ Smatt, (7)

where MR is a constant parameter with dimension of mass and Sm is the matter action. According
to the estimate of Ref. [11] the magnitude of temperature fluctuations of CMB demands MR ≈

3 × 1013 GeV. In our paper [5] it was found that R2-term creates considerable deviation from the
Friedmann cosmology in the post-inflationary epoch and, thereby, kinetics of massive species in
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cosmic plasma and the density of DM particles differ significantly from those in the conventional
cosmology.

The modified Einstein equations obtained from action (7) have the form:

Rµν −
1
2
gµνR −

1
3M2

R

(
Rµν −

1
4

Rgv + gµνD2 − DµDν

)
R =

8π
M2

Pl

Tµν , (8)

where Dµ is the covariant derivative, D2 ≡ gµνDµDν is the covariant D’Alembert operator, and Tµν

is the energy-momentum tensor of matter.
Taking trace of Eq. (8) yields

D2R + M2
RR = −

8πM2
R

M2
Pl

Tµ
µ . (9)

The general relativity limit can be recovered when MR → ∞. In this case, we expect to obtain the
usual algebraic relation between the curvature scalar and the trace of the energy-momentum tensor
of matter:

M2
PlRGR = −8πTµ

µ . (10)

We assume that the cosmological background is described by the spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a2(t)δi jdxidx j, (11)

where a(t) is the cosmological scale factor and

H =
Ûa
a

(12)

is the Hubble parameter at an arbitrary time moment.
We consider the homogeneous and isotropic distribution of matter with the linear equation of

state:

P = wρ, (13)

where ρ is the energy density, P is the pressure of matter, and w is usually a constant parameter. For
non-relativistic matter w = 0, for relativistic matter w = 1/3, and for the vacuum-like state w = −1.

Correspondingly, the energy-momentum tensor of matter Tµ
ν has the following diagonal form:

Tµ
ν = diag(ρ,−P,−P,−P). (14)

For homogeneous field, R = R(t), and with equation of state (13) the evolution of curvature is
governed by the equation:

ÜR + 3H ÛR + M2
RR = −

8πM2
R

M2
Pl

(1 − 3w)ρ. (15)
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In metric (11) the curvature scalar is expressed through the Hubble parameter as:

R = −6 ÛH − 12H2 . (16)

The energy-momentum tensor satisfies the covariant conservation condition, DµTµ
ν = 0, which

in FLRW-metric (11) has the form:

Ûρ = −3H(ρ + P) = −3H(1 + w)ρ . (17)

Equation (15) for the curvature evolution does not include the effects of particle production by
the curvature scalar. It is a good approximation at inflationary epoch, when particle production by
R(t) is practically absent, because R is large by the absolute value and the Hubble friction is large,
so R smoothly evolves down to zero. At some stage, when H becomes smaller than MR, curvature
starts to oscillate around zero efficiently producing particles. It commemorates the end of inflation
and the onset of the heating of the universe, which was originally void of matter. At that moment
the transition from the accelerated expansion (inflation) to a de-accelerated one took place. The
universe evolution at this stage is similar to Friedmann matter dominated regime but still differs
from it in many essential features.

As we see in what follows, curvature, R(t), can be considered as an effective scalar field, named
scalaron, with the mass equal to MR, since the left hand side (l.h.s.) of equation of motion of R(t)
(9) exactly coincides with the l.h.s. of the Klein-Gordon equation for massive scalar particle.

It is convenient to introduce dimensionless time variable and dimensionless functions:

τ = MR t, H = MR h, R = M2
R r, ρ = M4

R y. (18)

Equations (15), (16), and (17) now become:

r ′′ + 3hr ′ + r = −8πµ2(1 − 3w)y, (19)
h′ + 2h2 = −r/6, (20)
y′ + 3(1 + w)h y = 0, (21)

where prime means derivative over τ and µ = MR/MPl.
Let us consider first the inflationary stage of "empty" universe with ρ = 0 (y = 0 in dimension-

less quantities). It is shown in Ref. [10] that for sufficiently large R the devoid of matter universe
expanded quasi exponentially long enough to provide solution of flatness, horizon and homogeneity
problems existing in Friedmann cosmology (for the review see e.g. the book [12]).

According to definition (12) the scale factor is expressed through h(τ) as

a(τ) ∼ exp
[∫ τ

0
h(τ′) dτ′

]
. (22)

If the Hubble parameter slowly changes with time, the cosmological expansion would be close to
the exponential one and the scale factor during inflation would increase as:

ain f
a0
= exp

[∫ τin f

0
h(τ) dτ

]
= exp[Ne] , (23)
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where τin f is the duration of inflation and Ne is the so-called number of e-foldings. The initial
conditions should be chosen in such a way that at least 70 e-foldings are ensured:

Ne =

∫ τin f

0
h dτ ≥ 70. (24)

This can be realised if the initial value of r is sufficiently large and practically independent on the
initial value of h.

We can roughly estimate the duration of inflation neglecting higher derivatives in Eqs. (19)
and taking y = 0, so we arrive to the following simplified set of equations:

h2 = −r/12, (25)
3hr ′ = −r . (26)

These equations are solved as: √
−r(τ) =

√
−r0 − τ/

√
3, (27)

where r0 is the initial value of r at τ = 0. According to Eq. (25), the Hubble parameter behaves as
h(τ) = (

√
−3r0 − τ)/6. The duration of inflation is roughly determined by the condition h = 0:

τin f =
√
−3r0. (28)

The number of e-folding is equal to the area of the triangle below the line h(τ), thus Ne ≈ |r0 |/4.
It is in excellent agreement with numerical solutions of Eqs. (19)-(20) depicted in Fig. 1. After the

10 20 30 40 50
τ
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5
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τ

h
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1

Figure 1: Evolution of h(τ) at the inflationary stage with the initial values of dimensionless curvature
|r0 | = 300 (left) and |r0 | = 600 (right). The numbers of e-foldings, according to Eq. (24), are respectively
75 and 150.

Hubble parameter, H(t), reached zero, it started to oscillate around it with the amplitude decreasing
as 2/(3t) and the exponential rise of a scale factor, a(t), turns into a power law one.

The evolution of the dimensionless curvature scalar, r , during inflation is presented in the
left panel of Fig. 2. Inflation terminates when both, h and r , reach zero. Numerical solution for
r(τ) immediately after the end of inflation is presented in the right panel of Fig. 2. For larger τ
the solutions, r(τ)τ and h(τ)τ, take very simple forms depicted in Fig. 3. Both r(τ)τ and h(τ)τ
oscillate with constant amplitudes. The curvature, τr(τ), oscillates around zero, while the Hubble
parameter, τh(τ), oscillates around 2/3 almost touching zero at the minima.

6



P
o
S
(
M
U
L
T
I
F
2
0
2
3
)
0
1
4

Superheavy SUSY-kind DM and UHECR Elena Arbuzova

10 20 30 40 50

-100

-200

-300

-400

-500

-600

r
τ

60 70 80 90 100 τ

-0.2

-0.1

0.1

r
0.2

Figure 2: Evolution of the dimensionless curvature scalar for r0 = −300 (solid) and r0 = −600 (dotted).
Left panel: evolution during inflation; right panel: evolution after the end of inflation when curvature scalar
starts to oscillate (scale differs from the left graph).
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Figure 3: Evolution of the curvature scalar r(τ)τ (left panel) and the Hubble parameter h(τ)τ (right panel)
at post-inflationary epoch as functions of dimensionless time τ.

Stimulated by the numerical solutions we find the asymptotic analytical solutions (for details
see Ref. [5]):

r = −
4 cos(τ + θ)

τ
−

4
τ2 , (29)

h =
2

3τ
[1 + sin(τ + θ)] , (30)

where the constant phase θ is determined from the initial conditions and can be adjusted by the best
fit of the asymptotic solution to the numerical one. Comparison of numerical calculations presented
in Fig. 3 with analytical estimates (29) and (30) gives θ = −2.9π/4.

Curvature oscillations give rise to production of elementary particles. The back reaction of
particle production on the evolution of curvature, R(t), is usually described by an addition of the
friction term, Γ ÛR, into the l.h.s. of Eq. (15) with a constant Γ:

ÜR + (3H + Γ) ÛR + M2
RR = −

8πM2
R

M2
Pl

(1 − 3w)ρ. (31)

Here Γ is the decay width of the scalaron. The value of Γ depends on the concrete decay channel
and is calculated in Ref. [13] for different decay modes.
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Note, that this simple description of the decay by Γ ÛR-term in Eq. (31) is valid only for harmonic
oscillations of R(t). For arbitrary law of evolution of R the equation describing particle production
by oscillating curvature becomes integro-differential, non-local in time one [14, 15].

Particle production leads to an appearence of the source term in Eq. (17) for the energy density:

Ûρ + 3H(1 + w)ρ = S̄[R] , 0. (32)

The corresponding system of dimensionless equations takes the following form:

h′ + 2h2 = −r/6, (33)
r ′′ + (3h + γ)r ′ + r = −8πµ2(1 − 3w)y, (34)
y′ + 3(1 + w)h y = S[r], (35)

where µ = MR/MPl, γ = Γ/MR. Detailed description of the solution of this system during the
heating of the universe can be found in our review [8].

Our analysis shows that the cosmological history in R2-theory can be separated into 4 distinct
epochs.

Firstly, there was the inflationary stage, when the universe was void and dark with slowly
decreasing curvature scalar, R(t). The initial value of R should be rather large to ensure sufficiently
long inflation: R/M2

R & 102.
The second epoch began when R(t) approached zero and started to oscillate around it periodi-

cally changing sign:

R = −
4MR cos(MRt + θ)

t
, MR = 3 × 1013 GeV. (36)

At this stage the Hubble parameter also oscillates almost touching zero:

H =
2
3t
[1 + sin(MRt + θ)] . (37)

The curvature oscillations resulted in the onset of creation of usual matter, that at this stage
makes a subdominant contribution to the total cosmological energy density. We call this period
the scalaron dominated regime at which the heating of the universe took place. During this time
the universe evolution and particle kinetics were quite different from those in general relativity.
The new features of this stage open the window for heavy supersymmetry-kind particles to be
the cosmological dark matter, modify high temperature baryogenesis, lead to reconsideration of
primordial black holes formation, etc.

This period was followed by the transition from the scalaron domination to the dominance
of the produced matter of mostly relativistic particles. The oscillations of all relevant quantities
damped down exponentially and the particle production by curvature became negligible.

Lastly, after complete decay of the scalaron we arrived to the conventional cosmology governed
by general relativity.

In the following sections we consider the epoch of the universe heating. We calculate the
freezing of the massive species X in plasma, which was created by the scalaron decays into heavier
particles, and find the bounds on the masses of X-particles, allowing them to form the cosmological
dark matter, for several different decay modes of the scalaron.

8
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3. Kinetics and freezing of massive supersymmetry-kind relics in cosmic plasma
and bounds on masses of DM particles

In this section we consider the freezing of massive supersymmetry-kind relics in cosmic plasma
and obtain the bounds on masses of DM particles, following our papers [6–8].

The energy density of the produced particles depends upon the dominant decay mode of the
scalaron. If scalaron decays into 2 massless scalars minimally coupled to gravity, the decay width
of the scalaron and the energy density of the produced scalars are correspondingly equal to:

Γs =
M3

R

24M2
Pl

, ρs =
M3

R

240πt
. (38)

In the case of scalaron decay into a pair of fermions with mass m f we have:

Γf =
MRm2

f

6M2
Pl

, ρ f =
MRm2

f

120πt
. (39)

If the scalaron decay is induced by the conformal anomaly then the decay width and the energy
density of the produced massless gauge bosons are given by the expressions:

Γan =
β2

1α
2N

96π2

M3
R

M2
Pl

, ρan =
β2

1α
2N

4π2

M3
R

120πt
, (40)

where β1 is the first coefficient of the beta-function, N is the rank of the gauge group, α is the gauge
coupling constant, which at high energies depends upon the theory.

The presented laws demonstrate much slower decrease of the energy density of matter than
normally for relativistic matter at scalaron dominated regime, where ρ ∼ 1/a4(t) ∼ 1/t8/3, since
the scale factor at SD stage a(t) ∼ t2/3. It is ensured by the influx of energy from the scalaron decay.

Expressions (38) - (40) can be compared with the energy density of matter in the standard GR
cosmology:

ρGR =
3H2M2

Pl

8π
=

3M2
Pl

32πt2 . (41)

It is interesting to compare equations connecting temperature with time in general relativity
and in R2-cosmology for different expressions for energy density of matter.

Equating critical energy density of matter in GR (41), as well as energy densities of matter
(38), (39), and (40) in R2-theory, to the energy density of relativistic plasma with temperature T in
thermal equilibrium:

ρtherm =
π2g∗T4

30
, (42)

9
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where g∗ is the number of relativistic species in the plasma, g∗ ∼ 100, we obtain that the connection
of the temperature with time has very different forms in general relativity and in R2-cosmology:

(tT2)GR =

(
90

32π3g∗

)1/2
MPl = const; (43)

(tT4)s =
M3

R

4π3g∗
= const; (44)

(tT4) f =
MRm2

f

4π3g∗
= const; (45)

(tT4)an =
0.78
π2g∗

α2
RM3

R = const. (46)

We see that the canonical relation between the matter temperature and the cosmological time in
general relativity, T2t = CGR, is replaced in R2-theory by the relation T4t = CR2 . Moreover, as
it is followed from (43), CGR is a universal constant, proportional to the Planck mass, while in
R2-cosmology the constantCR2 depends on the model and may be strongly different for the scalaron
decay into non-conformal massless bosons, fermions or gauge bosons. Note, that in Eq. (46) the
coupling αR is taken at the energies equal to the scalaron mass.

The freezing of massive species X with mass MX is governed by the following equation:

ÛnX + 3HnX = −〈σannv〉
(
n2
X − n2

eq

)
, neq = gs

(
MXT
2π

)3/2
e−MX /T , (47)

where nX is the number density of X-particles, neq is their equilibrium number density, gs is the
number of spin states. 〈σannv〉 is the thermally averaged annihilation cross-section of X-particles
with v being the center-of-mass velocity.

Equation (47) was derived in 1965 by Zeldovich [16] and collaborators [17, 18]. In 1977 it
was applied to freezing of massive stable neutrinos [19, 20] and after that this equation was named
as the Lee-Weinberg equation, though justly it should be called the Zeldovich equation.

If annihillation of non-relativistic particles proceeds in S-wave the thermal averaging over
medium is not essential and the annihilation cross-section can be estimated as:

〈σannv〉 = σannv =
α2βann

M2
X

. (48)

If annihilating particles are Majorana fermions and their annihilation proceeds in P-wave, the
thermal averaged annihilation cross-section acquires the factor T/MX :

〈σannv〉 =
πα2βann

M2
X

T
MX

. (49)

Here βann is a numerical parameter proportional to the number of annihilation channels, βann ∼ 10.
We assume that direct X-particle production by curvature is suppressed in comparison with

inverse annihilation of light particles into X X̄-pair and X particles are produced as a result of
secondary reactions in relatvistic plasma, created by the scalaron decays into heavier species.

An important comment is of order here. There are two possible channels to produce massive
stable X-particles: first, directly through the scalaron decay into a X X̄-pair, and, second, by the

10
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inverse annihilation of relativistic particles in thermal plasma. Direct production of X X̄-pair by
scalaron leads to the conclusion that the energy density of X-particles in the present day universe
would be equal to the observed energy density of dark matter

ρ
(0)
X ≈ ρDM ≈ 1keV/cm3, (50)

if MX ≈ 107 GeV. On the other hand, for such a small mass thermal X-particle production (through
inverse annihilation) would be too strong and would result in very large density of X-particles. But
for larger masses ρ(0)X would be unacceptably larger than DM energy density.

A possible way out from this "catch-22" is to find a mechanism to suppress the scalaron decay
into a pair of X-particles. And such mechanism does exist. If X-particles are Majorana fermions,
their direct production is forbidden, since oscillating curvature scalar creates particles only in a
symmetric state, while Majorana fermions must be in an antisymmetric state.

Firstly, let us consider the scalaron decay into massless non-conformal scalars (detailed cal-
culations are presented in our paper [6]) . The dimensionless Zeldovich equation (47) has the
form:

df
dx
= −

0.12gsα2βann

π3g∗

(
MR

MX

)3 f 2 − f 2
eq

x5 , (51)

where x = MX/T is a dimensionless new variable and the new dimensionless function f is
introduced according to

nX = nin
(ain

a

)3
, (52)

where nin is the value of X-particle density at a = ain and Tin = MX , so the X-particles can be
considered as relativistic and thus

nin = 0.12gsT3
in = 0.12gsM3

X . (53)

Taking the following values of parameters: g∗ = 100, α = 0.01, βann = 10, and MR =

3 × 1013 GeV, we estimate the present day energy density of X-particles as:

ρX ≈ 1010
(
1010GeV

MX

)
GeV/cm3. (54)

This value is to be compared with the observed energy density of dark matter, ρDM ≈ 1 keV/cm3.
We see that X-particles must have huge mass much higher than the scalaron mass, MX � MR, to
make reasonable DM density. However, if MX > MR, then classical scalaron field can still create
X-particles, but the probability of their production would be strongly suppressed and such LSP with
the mass somewhat larger than MR could successfully make the cosmological dark matter.

As the next step, let us turn to the scalaron decay into fermions or massive conformal scalars (for
details see [6]). If bosons are conformally invariant due to non-minimal coupling to curvature, as
ξRφ2 with ξ = 1/6, they are not produced if their mass is zero. The probability of production of both
bosons and fermions is proportional to their mass squared. In what follows we confine ourselves to
consideration of fermions only. The width and the energy density of the scalaron decay into a pair

11
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of fermions are given by expressions (39) and the largest contribution into the cosmological energy
density at scalaron dominated regime is presented by the decay into the heaviest fermion species.

We assume, that the mass of the LSP is considerably smaller than the masses of the other decay
products, mX < m f , at least as mX ≤ 0.1m f . In this case the direct production of X-particles by
R(t) can be neglected and LSPs are dominantly produced by the secondary reactions in the plasma,
which was created by the scalaron decay into heavier particles.

Dimensionless kinetic equation for freezing of fermionic species takes the form:

df
dx
= −

α2βann

π3g∗

nin MRm2
f

m6
X

f 2 − f 2
eq

x5 , (55)

where nin = 0.09gsm3
X is the initial number density of X-particles at T ∼ mX .

The contemporary energy density of X-particles can be approximately estimated as

ρX ≈ 7 × 10−9
m3

f

mXMR
cm−3, (56)

where we have taken α = 0.01, βann = 10, g∗ = 100.
If in Eq. (56) we put m f = 105 GeV and mX = 104 GeV, then the energy density of X-particles

will be much less than the observed dark matter energy density: ρX � ρDM . However, choosing
mX ∼ 106 GeV, m f ∼ 107 GeV we obtain that ρX becomes comparable with the energy density of
the cosmological DM, ρDM ≈ 1 keV/cm3:

ρX ≈ 2.1
( m f

107 GeV

)3
(
106 GeV

mX

)
keV
cm3 . (57)

In the case when the scalaron decay is induced by the conformal anomaly we use expres-
sions (40) for the decay width and for the energy density of the produced gauge bosons and solve
Zeldovich equation (47). We assume that X-particles are Majorana fermions, so the direct produc-
tion of X X̄-pair by scalaron is forbidden. X X̄-pairs are produced through the inverse annihilation of
relativistic particles in the thermal plasma. The result of calculations of the frozen number density
of X-particles with mass MX in cosmic plasma, which was created by the scalaron decay into mass-
less gauge bosons due to conformal anomaly, lead to the conclusion that X-particles may be viable
candidates for the carriers of the cosmological dark matter if their mass is about MX ∼ 1011 GeV.

As we have seen, the range of allowedmasses of X-particles to form cosmological DM depends
upon the dominant decay mode of scalaron. The results are summarized in Table 1.

According to our results, the mass of DM particles, with the interaction strength typical for
supersymmetric ones, can be in the range from 106 to 1013 GeV. It is tempting to find if and how
they could be observed. There are some possibilities to make X-particles visible. The first one may
be connected with the annihilation effects in clusters of dark matter in galaxies and galactic halos,
in which, according to Refs. [21, 22], the density of DM is much higher than DM cosmological
density. Another possibility is to consider the superheavy DM particles, which could have a lifetime
long enough to manifest themselves as stable dark matter, but at the same time their decays could
lead to possibly observable contribution to the UHECR spectrum. Furthermore, instability of
superheavy DM particles can arise due to Zeldovich mechanism through virtual black holes (BH)
formation [23, 24]. We investigate the latter possibility in the next section.
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Dominant decay channel of the scalaron Allowed MX to form DM

Minimally coupled scalars mode:

Γs =
M3

R

24M2
Pl

MX & MR ≈ 3 × 1013 GeV

Massive fermions mode:

Γf =
m2

f MR

6M2
Pl

MX ∼ 106 GeV

Gauge bosons mode:

Γan =
β2

1α
2N

96π2

M3
R

M2
Pl

MX ∼ 1011 GeV

Table 1: The range of masses of X-particles allowed to form cosmological DM for different dominant decay
modes of the scalaron.

4. Cosmic rays from heavy particle decays

We assume that superheavy DM particles have been created by oscillating curvature scalar R(t)
in the model of the Starobinsky inflation [10] with the action (7):

S(R2) = −
M2

Pl

16π

∫
d4x
√
−g

[
R −

R2

6M2
R

]
.

We have seen in the previous section that for the dominant scalaron decay into a pair of fermions
with mass m f ∼ 107 GeV, the dark matter particles, produced in secondary reactions in plasma,
would have the necessary cosmological density if their mass is about 106 GeV. The decay width of
the scalaron in this case is given by expression (39):

Γf =
m2

f MR

6M2
Pl

.

This result is obtained for fermions with masses much smaller than the scalaron mass.
Now we are interested in the case when the scalaron decays create particles with mass about

1021 eV, that is the energy of ultra high energy cosmic rays (UHECR). Equation (39) for the width
of the scalaron decay into such superheavy leptons, L, with mass ML ∼ MR/2 should be modified
in the following way:

ΓL =
M2

LMR

6M2
Pl

√
1 −

4M2
L

M2
R

. (58)

The phase space factor (1 − 4M2
L/M

2
R)

1/2 makes it possible to arrange the density of presumably
DM particles L equal to the observed density of dark matter.
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However, with the canonical energy scale of gravitational interaction with MPl = 1.22 ×
1019 GeV, the life-time of such DM-particles turns out to be too long to allow for any observable
consequences of their decays.

A possible way out could be opened by diminishing the fundamental gravity scale at small
distances down to a lower value M∗ < MPl. This could lead to a considerable increase of decay
probability of DM-particles.

Usually dark matter particles are supposed to be absolutely stable. However, there exists a
mechanism suggested by Ya. B. Zeldovich [23, 24], which leads to decay of any presumably stable
particle through creation and evaporation of virtual black holes. However, the rate of the proton
decay calculated in the canonical gravity, with the energy scale equal to MPl, is extremely small. It
is shown in what follows that smaller scale of gravity and huge mass of DM particles both lead to a
strong amplification of the Zeldovich effect.

Superheavy DM particles with masses about 1012 GeV may decay through the virtual black
hole with the life-time only a few orders of magnitude longer than the universe age. Decays of
such particles could make essential contribution to UHECR. It can be achieved in the theory, where
gravitational coupling goes up at small distances or high energies.

We consider the model proposed in Refs. [25, 26], where the observable universe with the
Standard Model particles is confined to a 4-dimensional brane embedded in a (4+d)-dimensional
bulk, while gravity propagates throughout the bulk. In such scenarios, the Planck mass MPl

becomes an effective long-distance 4-dimensional parameter and the relation with the fundamental
gravity scale M∗ is given by

M2
Pl ∼ M2+d

∗ Rd
∗ , (59)

where R∗ is the size of the extra dimensions:

R∗ ∼
1

M∗

(
MPl

M∗

)2/d
. (60)

As we see below for future application we choose M∗ ≈ 3× 1017 GeV, so R∗ ∼ 10(4/d)/M∗ > 1/M∗.
Angular fluctuations of the cosmic microwave background radiation (CMBR) imply the follow-

ing value of the scalaron mass: MR ≈ 3 × 1013 GeV [11]. As it is shown in the quoted paper [11],
the CMBR fluctuations are expressed through the Planck and the scalaron masses in the following
way:

δ2 ∼

(
MR

MPl

)2
, (61)

where δ is the amplitude of the scalar fluctuations fixed by the observations. Thus, in models where
the fundamental gravitational coupling is determined by M∗, instead of MPl, the scalaron mass
should be changed appropriately, M∗R = 3 × 1013(M∗/MPl) GeV.

We are interested in the case when the scalaron decays create particles with energies 1021 eV,
that is the energy of UHECR. Thus, the scalaron mass, M∗R, should be at least of the order 1012 GeV.
To this end we need to choose

M∗ = MPl/30 ≈ 3 × 1017 GeV. (62)
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Analogously to the proton decay, p→ l+q̄q, let us consider the folliwng decay of X-particle:
X → L+q̄∗q∗, described by the diagram presented in Fig. 4.

Figure 4: Diagram describing X-particle decay into L+q̄∗q∗ through virtual BH.

According to calculations of Ref. [27] the width of the proton decay into positively charged
lepton and quark-antiquark pair is:

Γ(p→ l+q̄q) =
mp α

2

212 π13

(
ln

M2
Pl

m2
q

)2 (
Λ

MPl

)6 (
mp

MPl

)4+ 10
d+1

∫ 1/2

0
dxx2(1 − 2x)1+

5
d+1 , (63)

where mp ≈ 1GeV is the proton mass, mq ∼ 300 MeV is the constituent quark mass, Λ ∼ 300 MeV
is the QCD scale parameter, α = 1/137 is the fine structure constant, and d is the number of "small’
extra dimensions. The QCD coupling constant αs is supposed to be equal to unity. We can check
that the proton decay rate is extremely small and the corresponding life-time is 7.3 × 10198 years
which is by far longer than the universe age, tU ≈ 1.5 × 1010 years.

Using Eq. (63) with the substitution M∗ instead of MPl and keeping the same values of
other parameters, we can estimate the proton life-time with respect to decay p → q̄ql+ for
M∗ ≈ 3 × 1017 GeV, τ = 2.17 × 10188 years.

This case of decaying proton is mentioned for illustration only. We are interested in superheavy
DM particles with masses about 1012 GeV and trying to formulate the scenario leading to their
life-time with respect to the decay through the virtual BH only a few orders of magnitude longer
than the universe age.

We consider the process X → L+q̄∗q∗ and assume that heavy dark matter X-particle with
mass MX ∼ 1012 GeV consists of three heavy quarks, q∗, with comparable mass, leaving Λ∗ as a
free parameter. The life-time of X-particles can be evaluated using Eq. (63) where we substitute
α∗ = 1/50 instead of α = 1/137, MX = 1012 GeV instead of mp, the mass of the constituent quark
mq∗ = 1012 GeV, and d = 7:

τX =
1
ΓX
≈ 6.6 × 10−25s ·

210π13

α2
∗

(
GeV
MX

) (
M∗
Λ∗

)6 (
M∗
MX

)4+ 10
d+1

(
ln

M∗
mq∗

)−2
I(d)−1, (64)

where we took 1/GeV = 6.6 × 10−25s and

I(d) =
∫ 1/2

0
dxx2(1 − 2x)1+

5
d+1 , I(7) ≈ 0.0057. (65)
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Now all the parameters, except for Λ∗, are fixed: M∗ = 3 × 1017 GeV, MX = 1012 GeV, mq∗ ∼ MX

and the life-time of X-particles can be estimated as:

τX ≈ 7 × 1012 years
(
1015 GeV/Λ∗

)6
vs tU ≈ 1.5 × 1010 years. (66)

A slight variation of Λ near 1015 GeV allows to fix the life-time of the dark matter X-particles in
the interesting range. They would be stable enough to behave as the cosmological dark matter and
their decay could make considerable contribution into cosmic rays at ultra high energies.

5. Conclusions

• The existence of stable particles with interaction strength typical for SUSY and heavier than
several TeV is in tension with conventional Friedmann cosmology.

• R2-gravity opens a way to save life of such X-particles, because in this theory the density of
heavy relics with respect to the plasma entropy could be noticeably diluted by radiation from
the scalaron decay.

• The range of allowed masses of X-particles to form cosmological DM depends upon the
dominant decay mode of scalaron.

• In the model of high dimensional gravity modification there may exist superheavy DM
particles stable with respect to the conventional particle interactions. However, such DM
particles could decay though the virtual BH formation.

• With a proper choice of the parameters the life-time of such quasi-stable particles may be
larger than the universe age only by 3-4 orders of magnitude.

• This permits X-particles to make an essential contribution to the flux of ultra high energy
cosmic rays.

• The considered mechanism may lead to efficient creation of cosmic ray neutrinos of very
high energies observed at IceCube and Baikal detectors.
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