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1. Introduction

The Standard Model (SM) of particle physics precisely predicts production cross sections
over an impressive span of 15 orders of magnitude, all the way from recent total cross-section
measurements [1] to the most rare processes under study today. Recent achievements include
the observation of processes such as four-top-quark production [2, 3], single-top-quark production
in association with a photon 𝑡𝛾[4], WW𝛾[5], WZ𝛾 [6], W𝛾𝛾 production [7], and evidence of
tWZ production [8]. These processes, today considered rare, may well evolve into domains of
precision physics, similar to the progression from the Higgs discovery to the current extensive
Higgs measurement precision program: Today’s rare processes are tomorrow’s precision physics.

The study of the SM involves two main objectives: finding deviations that could suggest
new physics, accessing energy scales which may be beyond the reach of present colliders, and
leveraging its processes for direct searches for BSM. Both objectives are supported significantly by
continuously improved experimental methods, e.g. in luminosity determination, energy scales, and
object identification.

In these proceedings, a selection of recent results in Standard Model Physics is presented, as
available at the time of the EPS-HEP 2023. These include results by ATLAS, CMS, LHCb, and
H1. Tests of QCD using Jets and Photons are presented in section 2, recent results on vector boson
physics are summarized in section 3, W and top mass measurements in section 4, a brief summary
of the status of top quark studies is given in section 5, diboson, triboson, and more rare processes
are discussed in section 6, and section 7 concludes the proceedings.

2. Tests of QCD including 𝛼S, Photons, Jets, and Jet Substructure

Recent measurements involving jets and photons have provided new insights into QCD. These
include differential production cross-section measurements and, e.g., the study of their impact on
parton distribution functions, but also new jet substructure measurements and a wide variety of new
results constraining the strong coupling constant 𝛼𝑠 using different approaches.

A new measurement of inclusive isolated-photon cross section by ATLAS on full Run 2 data [9]
is performed for different isolation requirements to remove photons from the jets, determining cross-
sections at different pseudorapidities and comparing to NLO and NNLO predictions. Figure 1 shows
Theory/Data ratios and the spread of different PDF sets confronted with the new measurement. The
new input is an important test of pQCD and provides constraints on gluon PDFs in particular.

For the inclusive jets measurement of CMS with 2016 13 TeV Data [10], jets are reconstructed
using the anti-kT algorithm using an R parameter of 0.7 or 0.4 and unfolded to the particle level. In
a recent addendum to the main part of the publication, there is a full QCD fit at NNLO, which leads
to an improved precision of the gluon pdf with respect to DIS-only data as shown in Figure 1. PDFs
and 𝛼S are determined simultaneously and the extracted 𝛼𝑠 (𝑚𝑍 ) = 0.1166 ± 0.0017 (1.5% rel.) is
currently the most precise 𝛼S from jet measurements and begins a series of recent 𝛼S measurements
reported at the conference.

One new measurement released by CMS at the time of the conference [13] exploits azimuthal
correlations and defines a version of 𝑅Δ𝜙 (𝑝𝑇 ) which relates topologies with at least three jets with
the inclusive jets case. A 2D unfolding is done and the observable is very sensitive to 𝛼S. The
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Figure 1: Upper left: Theory/data ratios of the inclusive photon production cross-sections at different
pseudorapidities and for different PDF sets at NLOW [9]; Upper right: Gluon PDF constraints by adding
13 TeV inclusive jet cross section to PDF fit [10]; Lower left: Slice of Lund Jet Plane by CMS [11]; Lower
right: Multidifferential jet substructure measurement in high Q2 DIS events [12].

determination is performed in ranges of 𝑝T enabling the study of the running of the coupling, with
a value at the Z mass scale of 𝛼𝑠 (𝑚𝑍 ) = 0.117+0.0117

−0.0074 (< 10% rel.). The limiting factor for the
precision is the scale uncertainty and there is also a spread of results depending on the PDF choice.

A full Run 2 measurement by ATLAS to estimate the running of 𝛼S in multĳet events [14]
proceeds by measuring event shape observables. These energy-energy correlations have a large
sensitivity to QCD radiation and 𝛼S. The measurement adds towards the high end of the kinematic
range and gives a competitive value of 𝛼S at the Z mass scale, 𝛼𝑠 (𝑚𝑍 ) = 0.1175+0.0035

−0.0018 (< 3% rel.).
Two-point energy correlators E2C and 3-point energy correlators E3C inside jets were used for

𝛼S determination in a novel CMS measurement [15]. The premise of the measurement is that the
ratio of E3C and E2C is a linear function of 𝛼S. Determining the slope is a powerful handle on the
strong coupling, which mitigates the usual difficulties in extracting 𝛼S from jet substructure, namely
the degeneracy between q/g fraction and strong coupling in the observables. The intermediate result
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Figure 2: Upper left: 3-point energy correlators E3C inside jets by CMS [15]; Upper right: E3C/E2C ratio
used for 𝛼S determination [15]; Lower left: Measurement of Z 𝑝T spectrum [16]; Lower right: Sensitivity
of Z 𝑝T spectrum to 𝛼S used for 𝛼S determination [14]

of unfolded E3C touches directly upon different regimes of QCD, ranging from parton interaction
via the phase transition from parton to hadron to non-interacting hadrons. The E3C distribution and
slope determination are shown in Figure 2 and the currently most precise 𝛼S from jet substructure
is 𝛼𝑠 (𝑚𝑍 ) = 0.1229+0.0040

−0.0050 (< 4.1% rel.).
A preliminary result [14] based on 8 TeV data and the precise Z boson momentum distribution

measurement is the most precise experimental determination of 𝛼S to date. The rational for the
measurement is that Z bosons recoil against QCD ISR, leading to the position of the Z-𝑝T peak
being highly sensitive to 𝛼S as illustrated in Figure 2. In comparison to other 𝛼S determinations,
the uncertainty of this single measurement is on par with the world average and the lattice QCD
determination with an overall 𝛼𝑠 (𝑚𝑍 ) = 0.11828+0.00084

−0.00088 (0.7%rel.).
There is a growing array of measurements to look beyond single observables for jet substructure

studies, which give a handle on many aspects of QCD. Following the theory proposal [17] of
measuring the Lund jet plane, all LHC experiments are actively pursuing it. A recent addition is the
CMS measurement on full Run 2 data [11]. The comparison to theory predictions and e.g. detailed
study of Lund plane slices as shown in Figure 1 can be used as input to improve event generators and
for future developments of parton showers with corrections beyond leading-log accuracy. The study
of jet substructure is also pursued in legacy datasets: For example, H1 data from 2006 and 2007
is analysed using a novel ML-based unfolding technique for a multi-differential jet substructure
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Figure 3: Left: Forward Z-boson cross-section measurement at 5.02 TeV [18] Centre: Low PU W 𝑝T
spectrum and comparison to theory predictions [19] Right: Cross-section of W+/W−/W/Z at different centre-
of-mass energies [20].

measurement in high Q2 DIS events [12]. As illustrated in Figure 1, the achieved precision enables
new insights to distinguish between different state-of-the-art predictions.

3. Vector Boson Physics

The Drell-Yan process is an important standard candle and a number of W/Z precision and
differential measurements were discussed during the conference. In particular differential measure-
ments provide an important insight on different QCD aspects and by constraining these one can
work to achieve low modelling uncertainties in measurements of electroweak parameters.

The recent measurement at 8 TeV of Z-boson production properties in the full phase space of
the decay leptons [16] is crucial input to the 𝛼S determination mentioned in Section 2. It extrapolates
from the fiducial volume to full phase space and is presented as a function of the Z 𝑝T for different
rapidity ranges, see Figure 2. Comparisons to N3LO QCD predictions and N4LL resummation
show good agreement.

Measurements of forward Z-bosons with LHCb take advantage of the unique coverage of LHCb
to enable complementary measurements to ATLAS/CMS. [21] is the most precise measurement in
the forward region at 13 TeV and a new result at 5 TeV was submitted at the time of the conference
[18]. The rapidity dependence at 5 TeV is shown in Figure 3.

Similarly to [16], there have been recent measurements of W and Z cross sections and 𝑝T

spectra at 5 and 13 TeV in low PU conditions to avoid the recoil contamination [19]. In particular
the low 𝑝T measurements and predictions are an important ingredient for future measurements of
the W-boson mass and DYTURBO gives a good agreement as shown in Figure 3.

The total inclusive and fiducial W and Z boson production cross sections at 5.02 and 13 TeV
have also been measured by CMS, separately for W+/W−/W/Z. The analysis [20] compares the
individual channels to theory predictions, as well as relevant ratios between the channels and at
different centre-of-mass energies. An evolution of the inclusive cross-section values from previous
colliders to LHC is shown in Figure 3. A similar preliminary result has been released in the Z
channel at 13.6 TeV [22].
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Figure 4: Left: Overview of recent W mass measurements [23]; Centre: Compatibility of W/top mass
and EWK global fit [23] Right: Reduction of uncertainties by adding additional constraining dimensions to
top-quark mass measurement [24]

4. W and Top Quark Mass Measurements

The W mass measurements have been intensely discussed since last year with the CDF and
LHCb measurements. There is now a whole array of efforts by the LHC experiments to further
improve the precision. The latest update is an ATLAS result [23] that reanalyses the dataset
originally used for the a 2017 measurement. An advanced physics model and profile likelihood fitting
are employed to reduce systematic uncertainties during the fit, leading to a W mass measurement
improvement of around 15% in the uncertainty with respect to the previous result. A comparison
with previous results and overall compatibility of the new result with the global EW fit are shown in
Figure 4. At the time of the conference, the world W-mass combination became available [25]. The
combinations were also performed by removing each measurement individually; a high probability
of compatibility is observed when removing the CDF measurement from the combination. New
measurements with improved precision are expected from the LHC experiments.

Top quark mass measurements were also briefly discussed, but the situation has not changed
significantly since the previous year: The direct measurement with the highest precision is still the
lepton+jets 5D profile likelihood and kinematic fit measurement by CMS at 13 TeV [24]. It has
0.2% relative uncertainty and provides strong constraints on various experimental and theoretical
uncertainties as part of the fit as shown in Figure 4.

5. Top Quark Physics

The study of top quarks made a head-start in Run 3, already adding the first public result on
𝑡𝑡 cross sections at 13.6 TeV in September 2022. These early results, namely a 𝑡𝑡 cross-section
measurement by CMS [26] and a top and Z cross section measurement by ATLAS come with a
remarkable precision, already, and are consistent with high order predictions, see Figure 5.

In the ongoing effort towards achieving even better precision, a dilepton 𝑒𝜇 cross section mea-
surement by ATLAS reaches an uncertainty of 1.8% [27], see Figure 5. This achievement is enabled
also thanks to the updated luminosity determination for the corresponding Run 2 dataset [28]. This
example underlines the importance of continued careful studies of reconstruction performance and

6
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Figure 5: Summary plots of status of 𝑡𝑡 and 𝑡𝑡𝑡𝑡 cross-section measurements, taken from [LHCTopWG]

detector response leading to the use of improved algorithms and methods and ultimately benefiting
the precision of physics measurements.

The study of 4-top production, which probes important couplings and could see large enhance-
ment in many BSM scenarios, has seen a lot of progress in 2023. The same-sign and multilepton
channels which were released in a first iteration earlier and have the highest sensitivity were reanal-
ized and lead to observation by both ATLAS and CMS [2, 3], see Figure 5 for a summary.

This has been the result of dedicated efforts to maximize acceptance, loosening the requirement
on 𝑝T thresholds for selection of objects while adopting improved object identification algorithms,
and introducing intricate ways to improve the background separation and to have control of the
backgrounds. Machine learning plays an important role in boosting the overall sensitivity. In
support of four top and 𝑡𝑡𝐻 analyses, a recent measurement of inclusive and differential cross
sections of the 𝑡𝑡𝑏�̄� process was also presented [29].

6. Diboson, Triboson, and more Rare Processes

This section focuses on recent advancements in the study of multi-boson interactions within
the SM. It encompasses analyses of diboson and triboson productions(VV/V𝛾/𝛾𝛾 or VVV with
V=W,Z), along with other rare processes. These play an important role in probing the non-abelian
structure of the SM at high energy and are sensitive to new physics via anomalous Triple and Quartic
Gauge Couplings (aTGC and aQGC).

Starting with diboson results, there is an extensive measurement campaign by ATLAS and
CMS that probes all of the possible combinations of bosons, but also is extensive in covering
different decay channels. An excellent agreement with NNLO predictions is observed for diboson
measurements, when there used to be sizeable differences for comparisons with NLO. Latest results
in this area have been a WW cross section measurement by ATLAS [30] and the measurement of
differential ZZ+jets production cross sections by CMS [31].

Triboson and vector boson scattering processes are significantly more rare than diboson pro-
duction, so that some “SM discoveries” have been made only recently or are still to be made. In
a slight rephrase of the introductory words, yesterday’s rare processes are the precision physics of
today can be said to some of these processes by now: Vector boson scattering takes a special role
as it is so closely related to the electroweak symmetry breaking and also comes with the signature
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Figure 6: Left: Templates for distinguishing polarization states in [32]; Centre: Fit of different polarization
states in data [32]; Right: Discriminator dsitribution of first same-sign VBS analysis with hadronic tau [33]

of two forward tag jets and the more central decay products of the gauge boson decays. First mile-
stones and observations were reported in 2018/2019. By now many more boson combinations have
been established and even more rare processes and previously unexplored decay channels become
accessible. A growing focus here is to map out polarisation. For example, evidence is reported for
longitudinally polarised ZZ production in a recent study by ATLAS [32]. In this analysis, a BDT is
used to distinguish the different polarisation state combinations, using only angular observables to
avoid the modelling uncertainties of kinematic observables. The shape of the discriminator as well
as the corresponding distribution in data leading to the evidence is shown in Figure 6. A previously
uncovered decay channel for same-sign VBS, namely with a hadronic tau lepton, is explored in [33]
with discriminator distribution shown in Figure 6, getting close to establishing evidence with this
first result.

Triboson final states have a small cross section, and only started being accessible with full
Run 2 data at the LHC. The list of all observations is still reasonably short. After first establishing
VVV production in 2020 [34], WWW [35], Z𝛾𝛾 [36], WW𝛾 [5], W𝛾𝛾 [7], and WZ𝛾 [6] have been
established, with the latter three just this year.

Both experiments are efficiently exploiting the Run 2 data and important VBS/triboson results
are public or becoming public during this period of time. This means that some of the measurements
that were initially only expected to be feasible with the much larger datasets available during HL-
LHC have become feasible much earlier than anticipated in initial projections.

Effective Field Theory interpretations are standard practice in SM measurements, but there is a
trend further towards more global combinations, as also became evident during other presentations
at the conference. Two developments worth highlighting in particular are on one hand the advanced
EFT analysis in top final states presented by CMS [37] which uses event weights in simulation to
achieve a transparent propagation of changes in the operators to the detector level, and on the other
hand the global SMEFT interpretation by ATLAS [38] that combines Higgs boson and electroweak
data from ATLAS with EW precision observable constraints from LEP and SLC.

7. Conclusions

Fueled by improved detector performance, experimental methods, and extensive data from the
LHC, recent results in SM have become increasingly precise, often beyond earlier expectations.
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These developments, along with theoretical progress, have enabled rigorous testing of the SM.
Precise, differential measurements over wide kinematic ranges have been performed and a

number of “fundamental firsts” in multiboson studies have been achieved within the last year.
Reducing systematic uncertainties, both on the experimental and on the theory side, is a challenge
to stay as the datasets grow, but there has also been a lot of progress in the fruitful collaboration
between experimentalists and theorists.

Many new measurement ideas and methods emerge that are pursued with existing data, already,
but also profit from the ongoing data-taking during Run 3 and the extensive detector upgrades for
HL-LHC, bolstering the capabilities of the experiments. Precision measurements and their global
interpretation are key to a better understanding until which point the SM describes our world and
pave the way towards future research at colliders and beyond.
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