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An increasingly louder gravitational wave sky brings about a host of data analysis challenges
especially when it comes to parameter inference. It is well understood that direct implementa-
tion of traditional, likelihood-based inference techniques such as e.g. dynesty, MCMC etc. for
parameter inference of next-generation gravitational wave signals will not be feasible or even
possible in certain cases where the likelihood function becomes mathematically intractable. In
this article, I propose an implicit-likelihood technique called sequential simulation based infer-
ence packaged within the open-source pipeline peregrine and its applicability in dealing with
upcoming data analysis challenges in gravitational wave physics. I highlight the simulation ef-
ficiency that peregrine exhibits whilst ensuring optimal precision in a statistically robust way.
Ultimately, I emphasize the potential of implicit-likelihood techniques for parameter inference of
multiple different types of signals in the current and upcoming era of gravitational wave physics.
The peregrine analysis and inference library is available here (peregrine-gw/peregrine).
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1. Introduction

Observational status. Since the initial gravitational wave (GW) detection in 2015 [1], the GW sky
has become increasingly louder. The LIGO-Virgo-Kagra collaboration (LVKC) has reported 90
astrophysical events [2, 3], with additional sources present in extended catalogs1. These current
source catalogs aid in exploring gravitational theory [8], cosmology [9–11], and astrophysical
properties of black holes and neutron stars [12, 13].
The growth in the GW detection rate as evidenced by the cumulative distribution of detections
in 1 (left panel) can be attributed to enhanced search pipelines [14–16] as well as an increased
detector search volume. For instance, the ongoing fourth observing run (O4) predicts a search
volume over 400% larger than the previous run (O3) [17, 18], marking a significant milestone for
GW observatories. Moreover, with the next generation of gravitational wave observatories such as
the Einstein Telescope (ET) [19], Cosmic Explorer (CE [20] and the Laser Interferometer Space
Antenna (LISA) [21] starting operations in the near future, the rate of GW detections as well as the
variety of GW sources is predicted to rise rapidly. These advancements however, presents a host of
new computational challenges pertaining to GW data analysis.
GW Data Analysis. In general, data analysis efforts for gravitational waves are targeted towards
two major avenues: detection and parameter inference. In this article, I highlight the host of data
analysis challenges that current and future gravitational wave parameter inference efforts would
need to tackle in order to ensure high precision follow-up studies in the context of data-driven
gravitational physics as well as multi-messenger astronomy.
Simulation-based inference As a response to growing data analysis challenges in multiple physics
scenarios combined with rapid development in machine learning algorithms, simulation-based
inference (SBI) also known as implicit-likelihood inference has found widespread applications
in parameter inference for various physics settings including gravitational waves. SBI methods
facilitate Bayesian parameter inference using high fidelity simulations of signals (x) generated from
a sample of source parameters (𝜃) without needing explicit likelihood evaluation, as evidenced in
various studies (e.g., Refs. [22–32]). This approach is especially useful in GW analysis, offering
advantages in simulation efficiency as well as allowing for amortized inference.

2. Sequential simulation based inference for gravitational waves: Peregrine

This article highlights the application of a specific SBI algorithm called TMNRE (Truncated
Marginal Neural Ratio Estimation) [22] to GW data analysis [25, 34, 35]. Our open-source
inference pipeline peregrine built on top of the swyft algorithm [22, 36] leverages the power of
TMNRE to carry out targeted, sequential inference of parameters of interest by solving a binary
classification task (see Refs. [22, 36] for more details.). The ability to target lower dimensional
marginal posteriors in a sequential manner that composes well with marginalisation [22] makes
this approach highly simulation efficient whilst allowing for the possibility to utilise simpler neural
network architectures for training. The sequential SBI approach in peregrine is highlighted in the
schematic shown in Fig. 2. An application to highly spinning, precessing binary black hole (BBH)
signals [25] (evaluated with SEOBNRv4PHM [37]) has shown to provide posterior distributions
with precision similar to likelihood-based approaches (see for e.g. Fig. 3) with only 2% of

1See extended catalogs [4–7].
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Figure 1: Left panel: Cumulative distribution of gravitational wave transient detections [33] by the LIGO-
Virgo-Kagra collaboration (LVKC) upto the third observing run (O3) highlighting an increasing trend in
the number of confident detections in each observing run. Right panel: Schematic representation of the
cumulative time needed for parameter inference of gravitational wave detections from the LIGO-Virgo-Kagra
collaboration (upto O3 shown in blue) and for a conservative number of next generation detections (in yellow)
showing the unrealistic amount of computational time/resources necessary for current analysis techniques
employed for analysing next generation detections.

Figure 2: Illustration of the simulation based inference workflow of peregrine discussed in this paper. We
use truncated marginal neural ratio estimation (TMNRE) to carry out sequential simulation based inference
of gravitational wave signals [25].

waveform evaluations required for traditional likelihood-based methods such as nested sampling2.
Additionally, applications to inference of overlapping gravitational wave signals [34] and stochastic
gravitational wave background analysis [35] have also shown equally promising results in terms of
simulation-efficiency as well as precision, thus, making a case of sequential SBI and other implicit-
likelihood inference methods to have widespread utility throughout a host of GW data analysis
challenges for current and next-generation GW astrophysics.

2Our sequential SBI approach required ∼ 7×105 waveform evaluations compared to ∼ 4×107 using nested sampling.
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3. Results and Conclusions
Our results are represented in Figs. 3 and 4 wherein the level of agreement to traditional likelihood-
based methods3, as well as precision of posteriors obtained by analysing a BBH signal overlapping
with another (similar SNR) BBH signal with merger time +0.05s are highlighted. The remarkably
similar precision in the posteriors obtained from the overlapping analysis to that of the single signal
analysis (in the absence of overlap) renders our approach the state of the art when it comes to
analysing overlapping GW signals4.
An important discussion regarding our analysis concerns computational efficiency. It has been
explicitly shown that using traditional methods to carry out this type of joint inference is extremely
costly, taking on average over 3 weeks to run (see Footnote 3 in Ref. [38]). In comparison, across 7
sequential rounds of inference using peregrine (see Ref. [34]), we require only a factor of 10 more
than we required to perform analysis on a single signal in Ref. [25] for twice as many parameters
(30) and convincingly break the expected scaling of traditional methods solving this joint inference
problem, and is an order of magnitude fewer waveform evaluations than is typically required to
analyse even a single signal with traditional methods such as MCMC.5
Conclusion. In conclusion, the scalability and simulation-efficiency of implicit-likelihood (SBI)
approaches to parameter inference of current and future gravitational wave detections make a
strong case for widespread applicability of this class of approaches to GW data analysis. With
ever-increasing detection rates, overlapping signals etc. being major components of future GW
detections, a foray towards such highly scalable and simulation-efficient methods promise a highly
sustainable outlook for the future of GW data analysis. Furthermore, advancements in data com-
pression, faster waveform evaluations, and more efficient neural network designs hold great promise
for the future of implicit-likelihood inference.
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Figure 3: 2D skymap showing the localisation (post-inference) of a 20 signal-to-noise ratio spinning, pre-
cessing BBH merger using dynesty (in blue) and TMNRE via peregrine (in pink). This is representative of
the agreement of our (TMNRE) posteriors with those obtained using traditional likelihood-based approaches.

Figure 4: Right: Violin plots showing 1D marginal posterior distributions of all 30 parameters characterising
an overlapping signal comprising two concurrent BBH signals with (merger time separation) Δ𝑡𝑐 = 0.05 s
(left). The left of each violin shows the 1D marginal posterior obtained from our overlapping signal analysis
and the corresponding distributions on the right represent the posteriors obtained from a single signal
analysis of each component signal in the absence of the other waveform. The top and bottom panels indicate
parameters of the first (GW1) and second (GW2) signal respectively. For a detailed description see Ref.
[34].
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