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The LIGO-Virgo analyses of signals from compact binary mergers observed so far have assumed
isolated binary systems in a vacuum, neglecting the potential presence of astrophysical environ-
ments. We present here the first investigation of environmental effects on each of the events of
GWTC-1 and two low-mass events from GWTC-2. We find no evidence for the presence of envi-
ronmental effects. Most of the events decisively exclude the scenario of dynamical fragmentation
of massive stars as their formation channel. GW170817 results in the most stringent upper bound
on the medium density (≲ 21 g/cm3). We find that environmental effects can substantially bias
the recovered parameters in the vacuum model, even when these effects are not detectable. We
forecast that the Einstein Telescope and B-DECIGO will be able to probe the environmental effects
of accretion disks and superradiant boson clouds on compact binaries.
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1. Introduction

LIGO-Virgo-KAGRA (LVK) routinely conducts analyses looking for gravitational-wave (GW)
events, including parameter estimation, population and cosmology studies, and tests of general
relativity (GR) [2–15]. These analyses have traditionally assumed GW sources exist in a vacuum.
However, there is a growing interest in understanding the impact of astrophysical environments on
these observations, particularly in scenarios like binary black hole (BBH) formation in star clusters
[16–21] and active galactic nuclei (AGN) accretion disks [23, 24]. While prior studies mainly
focused on LISA-relevant sources [25–32], we explore LVK’s current ability to detect environmental
effects in events of the first LIGO-Virgo catalog (GWTC-1) provided by the Gravitational Wave Open
Science Center (GWOSC) [1]. We perform a Bayesian analysis to identify environmental effects
and constrain the environment density. This study introduces a parameterized post-Newtonian (PN)
test tailored for lower-mass binary systems, addressing environmental effects during the inspiral
stage. Geometrized units with 𝐺 = 𝑐 = 1 are used throughout.

2. Environmental effects

In astrophysical environments, the phase evolution of compact binaries is subject to modifica-
tions due to various effects: accretion affects the masses of binary components and the orbital phase.
In some media, Bondi-Hoyle-Lyttleton accretion (BHLA)[35] is a good description of the binary
accretion scenario. In other cases, such as environments with particle dark matter overdensities or
plasmas around black holes, collisionless accretion (CA) provides a better description. For LVK
binaries, accretion dynamical friction (DF) [33, 34] from the gravitational wake in the medium are
expected to be the most prominent effects on the GW phase evolution for binaries in quasi-circular
orbits. While the specifics of these effects depend on the particular environment and binary source,
certain generic features can be well approximated through semi-analytic expressions. These effects
generally result in small corrections, 𝛿Φ𝑘 , to the vacuum GW phase, 𝜙vac. These corrections intro-
duce additive terms at different low negative PN orders (𝑘 = −4.5PN, −5.5PN) in the GW phase
evolution [43] in the following way

𝛿Φ𝑘 ∝ −𝛽𝑘𝜌𝑀2 (1)

where the expressions for 𝛽𝑘 are shown in Tab.1.

Table 1: Dependence of environmental dephasing coefficients on physical parameters.

Effect 𝛽𝑘 𝑘

CA 125𝜋 (1−3𝜂)
357𝜂2 −4.5

BHLA 125𝜋 [1−5𝜂 (1−𝜂) ]
1824𝜂4 −5.5

DF 25𝜋 (1−3𝜂)
304𝜂3 −5.5
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𝛿Φ−4.5PN −2.09 0.86 −4.20 −1.29 −4.95 – −1.91 −3.17 −5.45 −2.55 –
𝛿Φ−11PN −3.30 0.77 −5.52 −3.33 −6.17 – −2.59 −2.81 −6.47 −2.57 –

Table 2: Logarithmic Bayes factor (log10 Benv
vac ) for GWTC-1 events. For the events GW170729 and

GW170823, we could not find informative 𝛿Φ𝑘 posteriors even with a broad prior range due to the low SNR
of their inspiral.

3. Bayesian analysis

We introduce an agnostic dephasing parameter 𝛿Φ𝑘 representing the environmental shift in the
GW phase. In frequency domain, the phase of a binary in an environment is given by:

𝜙env = 𝜙vac + 3
128𝜂

𝛿Φ𝑘𝑣
𝑘 , (2)

with 𝑣 B (𝜋𝑀𝑧 𝑓 ), where 𝑓 /2 denotes the orbital frequency and we define 𝑀𝑧 B (1 + 𝑧)𝑀 ,
with 𝑀 the binary’s total mass (in the source frame) and 𝑧 the cosmological redshift to the
source. The symmetric mass ratio is defined as 𝜂 B 𝑚1𝑚2/𝑀2, 𝜌 is the (local) average mass
density of the environment and 𝑘 = −4.5 for CA, and 𝑘 = −5.5 for BHLA or DF. We adopt the
model-agnostic framework of parameterized tests of GR [36] to incorporate this environmental
correction. Our waveform models IMRPhenomPv2 [37–39] and IMRPhenomPv2_NRTidalv2 [40]
for BBH and binary neutron star (BNS) systems, respectively, account for spin-induced precession
effects. We perform Bayesian parameter estimation to measure 𝛿Φ𝑘 and assess the evidence for
the environment. The Bayes factor Benv

vac compares the hypotheses: (i) data 𝑑 described by the
environmental model Henv with nonzero 𝛿Φ𝑘 , and (ii) data described by the vacuum model Hvac
with no additional parameters. We obtain the marginalized posterior probability distribution of 𝛿Φ𝑘

within Henv using Bayes’ rule with a zero-centred uniform prior for 𝛿Φ𝑘 . We choose the prior range
of 𝛿Φ𝑘 to ensure sampler convergence to the global maximum, considering the sensitivity to low-
mass systems. To address specific environmental effects causing phase deformation, we vary a
single phase parameter at a time.

4. Results

We analyzed the eleven events in GWTC-1: almost all events showed negative log Bayes
factor values, Tab.2, except for GW151012, which remained inconclusive due to its low statistical
significance. While the data do not support the evidence for an environment around the analysed
events, the possibility of an environmental influence cannot be definitely ruled out. Environmental
corrections appear most effective in the early inspiral phase, but their detection can be challenging
due to noise.
We use the results to estimate upper limits on environmental density as shown in Fig.1. For events
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Figure 1: 90% upper bounds on the environmental density obtained considering the effect of CA (blue
triangle), BHLA (red cross), and DF (green diamond).

GW150914, GW151226, GW170104, GW170608, GW170814, and GW170817, we find density
constraints in the range of 𝜌 ≲ ×106g/cm3, decisively ruling out the binary formation scenario
of dynamical fragmentation [41, 42]. However, for the remaining events, characterized by low
inspiral SNR and fewer inspiral cycles, the density constraints are inconclusive. Of particular note
is the constraint from GW170817, where we obtain 𝜌 ≲ 21g/cm3. This constraint stands out as the
tightest result in GWTC-1, and it roughly corresponds to the density of gold at room temperature
on Earth.

5. Prospects

In Figure 2, we show the required SNR for detecting environmental effects versus the en-
vironmental density curves, needed to obtain a log10 Benv

vac = 3 for events mimicking GW170817
and GW170608 events. Our results indicate that ET can detect DF effects in a GW170817-like
event when the surrounding environment has a density of approximately 10−3g/cm3. Additionally,
it can identify CA effects in environments about 103 times denser. B-DECIGO [22], with its
extended low-frequency coverage, will detect environmental effects at even lower densities. For B-
DECIGO, DF effects in a GW170817-like event become observable when the environment density
is approximately 10−12g/cm3 , and CA effects are detectable for densities roughly 104 times larger.
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Figure 2: Curves of required SNR for a given density value to achieve log10 Benv
vac = 3 for a specific

environmental effect, in the configuration of the third-generation detector ET (cyan shade) and the Japanese
space-detector B-DECIGO (gray shade). The dots represent the expected SNR if we replace the LIGO-
Hanford detector with those future detectors. We omit the BHLA curve since it follows very closely the DF
one.

6. Conclusions

We developed a model-agnostic Bayesian analysis to detect environmental effects around com-
pact binary systems, focusing on accretion and DF effects. Our analysis included individual events
from the GWTC-1 catalog, and we found no evidence supporting the existence of environments
around these binaries. We also derived upper bounds on environmental densities. we explored the
prospects for future detectors like ET and B-DECIGO. ET showed promise in detecting DF and
BHLA effects in environments as diluted as 𝜌 ∼ 10−3g/cm3, while B-DECIGO’s low-frequency
sensitivity extended the reach to even less dense environments. Our model-agnostic approach aimed
to assess the detectors’ overall capability and derive initial constraints. Future work will focus on
specific environments and consider higher multipoles for asymmetric binaries.
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