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We give a general prescription for the transformation between four-fermion effective operator bases
using one-loop corrections to tree-level transformations. The procedure has the major advantage of
only relating physical operators between bases, eliminating the necessity for evanescent operator
insertions in such transformations. Additionally, when performing basis changes using loop-
corrected transformations, the dependence on renormalization scheme factorizes between the two
bases, implying that such transformations simultaneously change renormalization scheme along
with the operator basis. The utility of this method has been exemplified in flavor physics through
several examples in BSM phenomenology.
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1. Introduction

In 𝑑 = 4 spacetime dimensions, there exist several relations between fermionic operator struc-
tures which allow for the reduction of a chosen physical operator basis. Schematically, redundant
operators which admit such reductions, Õ𝑖 , can be related to a set of physical operators, O𝑖 , via

Õ𝑖
𝑑=4
= 𝑅𝑖 𝑗O 𝑗 . (1)

However, many of these reductions, such as Fierz relations and those relying on the purely four-
dimensional objects 𝛾5 and the Levi-Civita tensor, are only well-defined when 𝑑 = 4. When
computing higher-order corrections, divergent loop integrals are rendered finite using dimensional
regularization, where the number of spacetime dimensions is continued away from four, thus
explicitly breaking these relations. This breaking is compensated by the introduction of additional,
unphysical operators which vanish in the limit 𝑑 → 4. These so-called evanescent operators are
defined as the difference between the redundant operator and its projection onto the physical basis
in four spacetime dimensions

𝐸𝑖 = Õ𝑖 −
(
𝑅𝑖 𝑗 + 𝜖Σ𝑖 𝑗

)
O 𝑗 +𝑂 (𝜖2) , (2)

where conventionally, 𝜖 = (4 − 𝑑)/2 and Σ fixes the evanescent scheme. Although these operators
are unphysical and drop from the basis when continuing back to 𝑑 = 4, it is well known that they
produce physical effects and cannot, in general, be neglected [1–3].

Of particular interest is the case of basis transformations: when transforming from one basis
to another, evanescent insertions into divergent loop integrals can lead to finite contributions to
the transformation of the physical basis. The standard way of accounting for such contributions is
to include a finite counterterm to physical Wilson coefficients. For a transformation {𝑄𝑖 , 𝐸 𝑗} →
{𝑄′

𝑖
, 𝐸 ′

𝑗
}, parameterized by

𝑄′ = 𝑅
(
𝑄 +𝑊 𝐸

)
, 𝐸 ′ = 𝑀

[
𝜖𝑈 𝑄 +

(
1 + 𝜖𝑈𝑊

)
𝐸
]
, (3)

the finite one-loop counterterm is given by [4]

𝑍
(1;0)
𝑄′𝑄′ = 𝑅

[
𝑊 𝑍

(1;0)
𝐸𝑄

−
(
𝑍
(1;1)
𝑄𝐸

+𝑊𝑍
(1;1)
𝐸𝐸

− 𝑍
(1;1)
𝑄𝑄

𝑊

)
𝑈

]
𝑅−1 . (4)

From Eqs. (3) and (4), it is clear that, not only do we need to relate the physical operators between
the two bases, but also the evanescent operators. Additionally, one must compute the insertions of
evanescent operators into one-loop diagrams.

An alternative method, originally proposed in Ref. [5], is to instead view this finite counterterm
as a “shift” to the tree-level basis transformation. This shift is given only in terms of one-loop
amplitudes of physical operator insertions in the respective bases. This has the clear advantage that
one no longer needs to relate all evanescent operators between the two bases or explicitly insert any
evanescent operators into one-loop diagrams.
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Figure 1: Two topologies of penguin diagrams with four-fermion operator insertions: open (left) and closed
(right). Here, the fermion lines follow spinor indices.

2. One-Loop Fierz Relations

The general strategy for computing shifted basis changes was originally applied to Fierz
relations, which relate tensor products of Dirac structures, O𝑖 , to a linear combination of Fierz-
conjugated structures, Õ𝑖 in 𝑑 = 4 via the matrix F , i.e.

Õ𝑖
𝑑=4
= F𝑖 𝑗O 𝑗 . (5)

When performing a next-to-leading order (NLO) computation, one-loop corrections to (5)
must be accounted for when transforming physical quantities such as Wilson coefficients (WCs) or
anomalous dimension matrices (ADMs). This is accomplished by introducing the one-loop shifted
transformation

Õ𝑖 =
(
F + Δ

)
𝑖 𝑗
O 𝑗 . (6)

The one-loop shift is computed via

Δ𝑖 𝑗

〈
O 𝑗

〉 (0)
=
〈
Õ𝑖

〉 (1) − F𝑖 𝑗

〈
O 𝑗

〉 (1)
, (7)

where ⟨𝑄⟩ (𝑛) denotes the 𝑛-loop amplitude with 𝑄-operator insertion.
Here, we emphasize that O𝑖 and Õ𝑖 are strictly physical operators in the two respective bases;

no evanescent insertions are necessary to compute the shifts at one-loop. It is, however, important
to note that in the computation of Eq. (7), the Fierz-evanescent operators which are rotated into the
physical basis under the transformation in Eq. (3) feature trivial scheme dependences, i.e.

𝐸Fierz
𝑖 = Õ𝑖 − F𝑖 𝑗 O 𝑗 . (8)

This is equivalent to setting 𝑈 = 0 in Eq. (3), and will be discussed further in Sec. 3.
The shifts to Fierz relations arising from four-fermion operators in the low-energy effective

theory (LEFT) were originally computed in Ref. [5] in the BMU scheme [6, 7]. In Ref. [5],
mass effects were neglected and therefore contributions from dipole operators were not accounted
for. These results were extended to include dipole effects in Ref. [8]. However, closed-penguin
topologies in dipole diagrams with insertions of four-fermion operators, see Fig. 1, result in traces
featuring odd numbers of 𝛾5 which cannot be evaluated in naive dimensional regularization (NDR).
Hence, the scheme used for evalutating 𝑑-dimensional Dirac algebra was NDR augmented by the ‘t
Hooft-Veltman (HV) scheme to evaluate such traces. Similar results in the standard model effective
theory (SMEFT) have also been computed in Ref. [9].
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3. Scheme Factorization

Since the one-loop shifts depend on the finite piece of one-loop amplitudes, they are naturally
scheme-dependent quantities. In Refs. [5, 8], calculations were performed in a fixed scheme,
irrespective of the choice of physical basis, namely the use of HV-augmented NDR with evanescent
quantities derived from the so-called Greek identities [10].

It is often the case that one wishes to change physical basis in order to avoid computing in a
more complicated renormalization scheme, e.g. one which features closed fermionic loops with
insertions of 𝛾5 that would require the HV or Larin scheme for evaluating traces. It is then necessary
to not only change basis, but also change renormalization scheme. In Eq. (4), this is handled by
relating all evanescent operators between the two bases and computing all one-loop diagrams,
including those with evanescent insertions.

The story is much simpler when using shifted basis transformations; instead of including all
evanescent operator insertions, one only needs to compute the physical operator insertions in each
basis, in the respective scheme of that basis. If one wishes to transform from some physical basis
{O𝑖} with scheme 𝑆 to another basis {Õ𝑖} with scheme 𝑆 such that, in 𝑑 = 4, Õ𝑖 = 𝑅𝑖 𝑗O 𝑗 , then the
shift is given by

Δ𝑖 𝑗

〈
O 𝑗

〉 (0)
=
〈
Õ𝑖

〉 (1)
�̃�

− 𝑅𝑖 𝑗

〈
O 𝑗

〉 (1)
𝑆

, (9)

where ⟨𝑄⟩S denotes the matrix element of operator 𝑄 computed in scheme S.
From Eq. (9), it is clear that the one-loop shift depends on both schemes, 𝑆 and 𝑆, as is

necessary to properly change schemes for scheme-dependent NLO quantities. This dual scheme-
dependence can be split into three pieces: the scheme-independent, 𝑆-scheme-dependent, and
𝑆-scheme-dependent pieces

Δ = ΔS.I. + Δ𝑆 + Δ�̃� , (10)

respectively.
Suppose one has a set of scheme-dependent WCs in the original basis whose scheme dependence

can similarly be represented as
𝐶𝑖 = 𝐶S.I.

𝑖 + 𝐶𝑆
𝑖 . (11)

Then, when transforming using the shifted relation Eq. (6) withF → 𝑅, one finds the transformation
of the WCs

�̃�𝑖 = 𝐶 𝑗𝑅
−1
𝑗𝑖 − 𝐶 𝑗𝑅

−1
𝑗𝑘Δ𝑘ℓ𝑅

−1
ℓ𝑖 , (12)

to one-loop order. Since �̃�𝑖 can only depend on the scheme 𝑆, the scheme-dependence of Δ must
factorize such that

�̃�S.I.
𝑖 = 𝐶S.I.

𝑗 𝑅−1
𝑗𝑖 − 𝐶S.I.

𝑗 𝑅−1
𝑗𝑘Δ

S.I.
𝑘ℓ 𝑅

−1
ℓ𝑖 ,

0 = 𝐶𝑆
𝑗 𝑅

−1
𝑗𝑖 − 𝐶S.I.

𝑗 𝑅−1
𝑗𝑘Δ

𝑆
𝑘ℓ𝑅

−1
ℓ𝑖 ,

�̃� �̃�
𝑖 = −𝐶S.I.

𝑗 𝑅−1
𝑗𝑘Δ

�̃�
𝑘ℓ𝑅

−1
ℓ𝑖 .

(13)

In Ref. [11], it was proven that the one-loop shifts, Eq. (9), satisfy exactly such a factorization of
renormalization scheme, allowing for the simultaneous change of basis and renormalization scheme
without the need to insert evanescent operators into one-loop diagrams. This method was then used
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to reproduce the two-loop ADM corresponding to the mixing of BSM LEFT operators into the
electron dipole moment in the Larin scheme [12] using a much simpler computation in NDR.

As mentioned in the previous section, Eq. (9) only holds in the case that evanescent operators
which rotate into the physical basis do not feature an 𝑂 (𝜖) scheme-dependence (though, other
evanescent operators can have an arbitrary scheme dependence). In the case where such𝑂 (𝜖) terms
exist, as in Ref. [4], additional care must be taken. In Ref. [5], the proper basis transformation
was found by computing the additional “𝑈-terms” of Eq. (4) which correspond to the evanescent-
physical rotation. A generalization to Eq. (9) which accounts for these cases will be presented in a
future update of [11].

4. Conclusions

A change of basis is often useful in effective field theory computations when different parts of
the calculation are better suited for different bases, e.g. when the basis which is most convenient
for matching leads to complications in the calculation of ADMs which do not arise in another basis.
However, when working at NLO and higher, additional care must be taken to account for loop
effects which alter the naive tree-level basis changes.

In these proceedings, we have presented a method for directly including loop effects into basis
changes via shifts without the need to explicitly calculate the one-loop insertions of evanescent
operators. Additionally, we have discussed how this method can be used to change renormalization
schemes simultaneously with a change of basis. Explicit results for the shifts between Fierz-
conjugated LEFT operators in the BMU scheme are given in Refs. [5, 8] and several known
literature results are reproduced using this method in Refs. [5, 8, 11].
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