Examining semileptonic decays of B_s to D_s^{**} mesons beyond the standard model

Karthik Jaina,* and Barilang Mawlonga

aSchool of Physics, University of Hyderabad, Hyderabad-500046, India
E-mail: jainkarthikm@gmail.com, barilang05@gmail.com

Deviations of the measured LFU ratios such as $R_{D^{(*)}}$ and $R_{J/ψ}$ from the standard model predictions by 3.3σ and 1.8σ, respectively, indicate the possible existence of new physics beyond the standard model. Precise measurements of other observables in decays involving $b \to cℓν_ℓ$ transitions in the future may substantiate or rule out the presence of new physics. Hence, it becomes important to analyze complementary $b \to cℓν_ℓ$ channels also, such as $B_s \to D_s^{(*)}ℓν_ℓ$, where $D_s^{**} = \{D_s^{*0}, D_s^{*+}, D_s^{*1}, D_s^{*2}\}$. The measured ratios $R_{D^{(*)}}$ suggest an excess of taus, whereas the measured ratio $R_{Λ_c}$ shows a deficit in taus. The complementary information obtained from the measurement of LFU ratios like $R_{D_s^{**}}$ may become crucial in the interpretation of the contributing new physics. In this work, we analyze various q^2-dependent observables pertaining to the $B_s \to D_s^{**}ℓν_ℓ$ decay modes within a new physics approach. The new interactions are constrained using available experimental data of $b \to cℓν_ℓ$ transitions.
1. Introduction

The anomalies in the Lepton Flavor Universality (LFU) ratios R_D and R_{D^*} persist as these ratios continue to exhibit deviations from the Standard Model (SM) by 3.3σ [1], hinting the presence of possible new physics (NP) beyond the SM. Measurements of other observables like $\mathcal{R}_{J/\psi}, F_L^{D'}, P_L^{D'}$ and R_{Λ_c} additionally entails NP in $b \to c\tau\bar{\nu}_\tau$ transitions [2]. To obtain a more accurate picture of the new interactions which are driving these anomalies, it is therefore imperative to study observables in other decay modes mediated by the same underlying quark level transition. In this work, we focus on the complementary decay channels $B_s \to D_{s*}^{**}\tau\bar{\nu}_\tau$, where $D_{s*}^{**} = \{D_{s0}^{*0}, D_{s1}^{*0}, D_{s1}^{*1}, D_{s2}^{*2}\}$. The D_{s*}^{**} states have narrow decay widths which may make their decays easier to measure in experimental colliders. Within a model-independent effective field theory approach, we analyze these decay modes, testing the sensitivity to NP of various q^2-dependent observables. In particular, we examine the LFU ratio $R_{D_{s}^{*}}$, the forward-backward asymmetry A_{FB}^{r} and the convexity parameter C_F^{r}.

2. Effective Lagrangian

The effective Lagrangian for $b \to c\ell\bar{\nu}_\ell$ transitions is written as
\[
\mathcal{L}_{eff} = -\frac{4G_F}{\sqrt{2}}V_{cb}\left[(1 + C_{V,L}^{\ell})O_{V,L}^{\ell} + C_{V,R}^{\ell}O_{V,R}^{\ell} + C_{S,L}^{\ell}O_{S,L}^{\ell} + C_{S,R}^{\ell}O_{S,R}^{\ell} + C_{T}^{\ell}O_{T}^{\ell}\right] + h.c.,
\]
where $C_{V,L,R}$, $C_{S,L,R}$, C_{T} are the vector, scalar and tensor type NP couplings, and the four-fermion operators are defined as
\[
\begin{align*}
O_{V,L}^{\ell} &= (\bar{c}\gamma^\mu P_L b)(\bar{\nu}_\ell\gamma_\mu P_L \ell),
O_{V,R}^{\ell} &= (\bar{c}\gamma^\mu P_R b)(\bar{\nu}_\ell\gamma_\mu P_L \ell),
O_{S,L}^{\ell} &= (\bar{c} P_L b)(\bar{\nu}_\ell P_R \ell),
O_{S,R}^{\ell} &= (\bar{c} P_R b)(\bar{\nu}_\ell P_R \ell),
O_{T}^{\ell} &= (\bar{c}\sigma^{\mu\nu} P_L b)(\bar{\nu}_\ell\sigma_{\mu\nu} P_R \ell).
\end{align*}
\]
In this work, we analyze new physics sensitivity only in the presence of $C_{V,L}, C_{S,L}$ and $C_{S,R}$ as in [2].

3. Observables

The two-fold angular decay distribution can be expressed as [3]
\[
\frac{d^2\Gamma}{dq^2dcos\theta_\ell} = a(q^2) + b(q^2)cos\theta_\ell + c(q^2)cos^2\theta_\ell,
\]
where $a(q^2), b(q^2), c(q^2)$ are q^2-dependent coefficients that are sensitive to NP contributions, θ_ℓ is the angle between the charged lepton and the daughter meson in the rest frame of the virtual W boson. The relevant observables $R_{D_{s}^{*}}, A_{FB}^{r}$ and C_F^{r} can be constructed using Eq. (3).

4. Form Factors

The form factors for the $B_s \to D_{s}^{*}^{**}$ transitions are calculated within the Heavy Quark Effective Theory (HQET) framework [4], where they are parametrized by the leading order Isgur-Wise functions and given to linear order in $(w - 1)$ as:
\[
\zeta(\omega) \approx \zeta(1)[1 + \zeta'(w - 1)], \quad \tau(\omega) \approx \tau(1)[1 + \tau'(w - 1)],
\]
where \(\omega = (M_{B_s}^2 + M_{D_s}^2 - q^2)/2M_{B_s}M_{D_s} \). The function \(\zeta(w) \) determines the form factors for \(B_s \rightarrow \{D_{s0}^*, D_{s1}^*\} \) transitions, whereas \(\tau(w) \) determines the form factors for \(B_s \rightarrow \{D_{s1}, D_{s2}^*\} \) transitions. Following [4], we consider approximation C to obtain the form factor parameters.

5. Results

The values of the new couplings \(C_k (k = V_L, S_L, S_K) \) are obtained by performing a \(\chi^2 \)-fit using the experimentally measured values of \(R_{D^{*0}}, R_{J/\psi}, F_{L}^{D^*} \) and \(P_{D}^{D^*} \), and considering an upper bound 30\% of \(\mathcal{B}(B_s^+ \rightarrow \tau \nu_{\tau}) \). We have used [5] to obtain theoretical expressions for the observables considered in the fit. The SM predictions of \(R_{D^{(*)}} \) can be found in [1] and \(R_{J/\psi} \) in [6] and references therein. Considering one new coupling at a time, the obtained best fit values of the couplings along with their 1\(\sigma \) range are given in the table below:

<table>
<thead>
<tr>
<th>(C_k)</th>
<th>Best fit value</th>
<th>1(\sigma) range</th>
<th>Pull</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{V_L})</td>
<td>0.0668</td>
<td>[0.0504, 0.0829]</td>
<td>4.2298</td>
</tr>
<tr>
<td>(C_{S_L})</td>
<td>0.1543</td>
<td>[0.1000, 0.2052]</td>
<td>2.6631</td>
</tr>
<tr>
<td>(C_{S_K})</td>
<td>0.1731</td>
<td>[0.1261, 0.2178]</td>
<td>3.4347</td>
</tr>
</tbody>
</table>

Table 1: Best fit values of NP couplings

The \(q^2 \)-variations of \(R_{D_s^{**}}, A_{FB}^T \) and \(C_P^T \) in the presence of vector and scalar NP interactions are presented in Figs. (1-3).
6. Discussion and Conclusion

For the considered decay modes, it is observed that \(R_{D_s^{*+}} \) is more sensitive to NP as compared to \(A_{FB}^{+} \) and \(C_{F}^{+} \). \(R_{D_s^{*+}} \) displays maximum new physics sensitivity in the presence of the vector \(C_{VL} \) coupling, rather than in the presence of the scalar \(C_{SR} \) couplings. For all the decay modes, \(C_{VL} \) effects tend to favour the tau mode in comparison with SM predictions. For \(A_{FB}^{+} \) and \(C_{F}^{+} \), the NP effects of \(C_{VL} \) cancel out in these ratios and are not presented here. In the presence of \(C_{SR} \), the ratios \(R_{D_s^{*0}} \) and \(R_{D_s^{*1}} \) indicate a deficit of taus, while \(R_{D_s^{*2}} \) displays an excess of taus. In the presence of \(C_{SR} \), the ratio \(R_{D_s^{*1}} \) indicates a deficit of taus, while \(R_{D_s^{*0}} \) and \(R_{D_s^{*2}} \) display excess of taus. The ratio \(R_{D_s^{*2}} \) is in agreement with the SM prediction for the scalar couplings. The observables considered here have shown a varied pattern in their dependence on NP. Their precise measurements will help to substantiate or rule out various NP scenarios. This can furnish crucial complementary information on the structure of NP in \(b \to c \tau \bar{\nu}_\tau \) transitions.

Acknowledgments

Karthik Jain would like to acknowledge the Institution of Eminence, University of Hyderabad, India for the travel funding to attend EPS-HEP2023 conference.

References

[2] C. P. Haritha, K. Jain, and B. Mawlong, Analysis of some \(b \to c \tau \bar{\nu}_\tau \) decay modes beyond the standard model, Nucl. Phys. B. 994, 116309 (2023)

Examining semileptonic decays of B_s to D^{***} mesons beyond the standard model

Karthik Jain

