PROCEEDINGS OF SCIENCE

PoS

Higgs boson properties (mass/width) at CMS

Filippo Errico^{a,*}
^a INFN Sezione Roma,
Roma, Italy
E-mail: erricof@roma1.infn.it

The Higgs boson mass and its decay width are fundamental properties of this particle. Here we summarise the latest measurements of these properties performed analysing Run 2 data at a centre of mass energy of 13 TeV, with the CMS experiment, in the four-lepton and di-photon final states. The most precise Higgs boson mass measurement is $m_H = 125.38 \pm 0.14$ GeV, while for the width is $\Gamma_H = 3.2^{+2.4}_{-1.7}$ MeV, excluding the scenario with $\Gamma_H = 0$ with 3.6 standard deviation.

The European Physical Society Conference on High Energy Physics (EPS-HEP2023) 21-25 August 2023 Hamburg, Germany

*Speaker

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

The Higgs boson (H) discovery was announced by the ATLAS [1] and CMS [2] Collaborations, on the 4th of July 2012 [3–5] and since then, much effort has been put into determining its properties. The mass of the H (m_H) is a free parameter of the Standard Model (SM) and it must be measured with high precision since it determines all the other H properties. Currently, all theoretical information (such as production cross-section and branching ratios) is predicted by the SM for a Higgs boson mass of 125 GeV. For example, the couplings with other massive particles depend on m_H and are precisely predicted by the SM, thus its precise measurement, together with the measurement of the production cross sections and decays to SM particles are a suitable test for the SM. The Higgs boson width (Γ_H) is predicted instead precisely within the SM, for a given m_H . However, modifications of the H boson couplings to the SM particles, or possible decays to yet undiscovered particles would alter these predicted values, and therefore it also needs to be experimentally measured.

2. The Higgs boson mass

The m_H measurement is performed using the $H \to ZZ^* \to 4\ell$ [6] and $H \to \gamma\gamma$ [7] channels thanks to their very good mass resolution (1-2%) and complete reconstruction of the final state. Data collected during 2016 proton-proton collisions at 13 TeV, corresponding to an integrated luminosity of 36 fb^{-1} have been analysed (see Figure 1). In the $H \to ZZ^* \to 4\ell$ channel, final results have

Figure 1: Invariant mass distribution for the four-lepton [6] (left) and di-photon [7] (right) final state.

been extracted building a three-dimensional statistical model, with the four-lepton invariant mass, a kinematic discriminant (D_{bkg}^{kin}) and the event-by-event mass uncertainty $(\delta m_{4\ell})$. The D_{bkg}^{kin} helps in discriminating signal from the main background due to $gg/qq \rightarrow 4\ell$ events. The $\delta m_{4\ell}$ instead helps in proper accounting for the signal mass resolutions for individual events.

The mass value measured using $H \rightarrow ZZ^* \rightarrow 4\ell$ channel is $m_H = 125.26 \pm 0.21$ [0.19(stat) $\pm 0.08(\text{syst})$] GeV [6]. The inclusion of D_{bkg}^{kin} and $\delta m_{4\ell}$ in the model improves the mass measurement of about 4% and 10% respectively. The impact of including these variables in the model is visible in the scan of the profile likelihood projection on m_H in Figure 2.

Figure 2: Profile likelihood projection on m_H for different statistical models [6].

The measurement precision is limited by the statistical uncertainty with a small contribution from systematic uncertainties, mainly due to lepton momentum scale. In the $H \rightarrow \gamma\gamma$ channel instead the relative contribution of the two uncertainties is different since the calibration of the energy response of the detector to photons plays a crucial role. Cluster containment corrections are derived on simulation using a multivariate regression. The residual differences in energy scale and resolution between simulation and data is dealt with a multistep approach, using $Z \rightarrow$ ee events in bins of electron η and p_T . In order to enhance the sensitivity, selected events are classified according to their production mode, the mass resolution and their predicted signal-to-background ratio. The mass value measured using $H \rightarrow \gamma\gamma$ channel is $m_H = 125.78 \pm 0.26$ [0.18(stat) \pm 0.19(syst)] GeV [7]. Figure 3 shows the breakdown of the systematic uncertainty: the main contributions come from photon calibrations and the non-uniformity of the light collected by the detector. This last effect is a direct consequence of the different shower shape of electrons (used to extract calibration) and photons.

This result has been then combined with the one from $H \rightarrow ZZ^* \rightarrow 4\ell$ and the one obtained analysing data collected during 2011-2012 at 7 and 8 TeV corresponding to 5.1 and 19.7 fb^{-1} , respectively (see Figure 4), resulting in $m_H = 125.38 \pm 0.14$ [0.11(stat) ± 0.08 (syst)] GeV [7].

Source	Contribution (GeV)
Electron energy scale and resolution corrections	0.10
Residual $p_{\rm T}$ dependence of the photon energy scale	0.11
Modelling of the material budget	0.03
Nonuniformity of the light collection	0.11
Total systematic uncertainty	0.18
Statistical uncertainty	0.18
Total uncertainty	0.26

Figure 3: Breakdown of the systematic uncertainties [7].

Figure 4: Summary of the m_H measurement in the $H \to ZZ^* \to 4\ell$ and $H \to \gamma\gamma$ channels, using data collected during 2011, 2012 and 2016 at 7, 8 and 13 TeV respectively [7].

3. The Higgs boson width

The direct measurement of the Γ_H is mainly affected by the detector resolution compared to the predicted value (4.07 MeV [8]). A proposed solution, adopted in the H \rightarrow ZZ channel, is the measurement of the Higgs boson width comparing the on-shell and off-shell production rates:

$$\frac{\sigma_{gg \to H \to ZZ^*}^{on-shell}}{\sigma_{gg \to H^* \to ZZ}^{off-shell}} \sim \frac{1}{\Gamma_H}$$

The analysis is performed using data collected during 2016-2018 at $\sqrt{s} = 13$ TeV, corresponding to an integrated luminosity of 138 fb^{-1} in the $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow ZZ^* \rightarrow 2\ell 2\nu$ final states [9]. Figure 5 shows the off-shell invariant mass distributions in the four-lepton and the transverse mass in the $2\ell 2\nu$ final state. The measured value of the width is $\Gamma_H = 3.2^{+2.4}_{-1.7} MeV$. Figure 6 shows the profile likelihood projection on Γ_H , with the splitting of the contributions from the different final states. The scenario in which there is no off-shell contribution ($\Gamma_H = 0$) is excluded at a p-value of 0.0003 (3.6 standard deviations).

4. Conclusion

The Higgs boson properties (mass and width) as measured by the CMS Collaboration have been summarised. The Higgs boson mass, free parameter of the SM, is measured with a precision of the order to 0.1%. The best width measurement is extracted comparing on-shell with off-shell decay rates resulting in $\Gamma_H = 3.2^{+2.4}_{-1.7} MeV$, and excluding the scenario with $\Gamma_H = 0$ with 3.6 standard deviation.

Figure 5: Distributions of the (transverse) ZZ invariant mass from the 4ℓ ($2\ell 2\nu$) off-shell signal region [9].

Figure 6: 1D profile likelihood projection on m_H for the combination of on-shell data with 4ℓ and/or $2\ell 2\nu$ off-shell data [9].

References

- ATLAS Collaboration, "The ATLAS Experiment at the CERN Large Hadron Collider", JINST 3, S08003 (2008), 10.1088/1748-0221/3/08/S08003
- [2] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 3, S08004 (2008), 10.1088/1748-0221/3/08/S08004
- [3] ATLAS Collaboration, "Observation of a new particle in the search for the Standard

Model Higgs boson with the ATLAS detector at the LHC", Phys. Lett. B 716, 1 (2012), https://doi.org/10.1016/j.physletb.2012.08.020

- [4] CMS Collaboration, "Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC", Phys. Lett. B 716, 30 (2012), https://doi.org/10.1016/j.physletb.2012.08.021
- [5] CMS Collaboration, "Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8TeV", JHEP 06, 81 (2013), https://doi.org/10.1007/JHEP06(2013)081
- [6] CMS Collaboration, "Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \$\$ \sqrt{s}=13 \$\$TeV", JHEP 11, 47 (2017), https://doi.org/10.1007/JHEP11%282017%29047
- [7] CMS Collaboration, "A measurement of the Higgs boson mass in the diphoton decay channel", Phys. Lett. B 805, (2020), https://doi.org/10.1016/j.physletb.2020.135425
- [8] R. L. Workman *et al.* [Particle Data Group], PTEP **2022**, 083C01 (2022), doi:10.1093/ptep/ptac097
- [9] CMS Collaboration, "Measurement of the Higgs boson width and evidence of its off-shell contributions to ZZ production", Nature Physics, 11 (2022), https://doi.org/10.1038/s41567-022-01682-0