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After the possible discovery of new particles, it will be crucial to determine the properties, and in
particular the couplings, of the new states. Here, we focus on scalar trilinear couplings, employing
as an example the case of the trilinear coupling of scalar top quarks (stops) to the Higgs boson
in the Minimal Supersymmetric Standard Model (MSSM). We discuss possible strategies for
experimentally determining the stop trilinear coupling parameter, which controls the stop–stop–
Higgs interaction, and we demonstrate the impact of different prescriptions for the renormalisation
of this parameter. We find that the best prospects for determining the stop trilinear coupling arise
from its quantum effects entering the model prediction for the mass of the SM-like Higgs boson in
comparison to the measured value, pointing out that the prediction for the Higgs-boson mass has a
high sensitivity to the stop trilinear coupling even for heavy masses of the non-standard particles.
Regarding the renormalisation of the stop trilinear coupling, we identify a renormalisation scheme
that is preferred given the present level of accuracy, and we clarify the origin of potentially large
logarithms that cannot be resummed with standard renormalisation group methods.
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1. Introduction
The Higgs boson at 125 GeV is so far the only known scalar particle without a known substruc-

ture. However, many extensions of the Standard Model (SM) introduce additional scalar degrees
of freedom in order to address questions left unresolved in the SM, 𝑒.𝑔. the nature of dark matter,
or the observed baryon asymmetry of the Universe. A particularly interesting new type of inter-
action potentially arising in Beyond-the-SM (BSM) models is a trilinear scalar interaction that is
not generated by a vacuum expectation value but instead arises as a consequence of dimensionful
couplings, independently of spontaneous symmetry breaking. Such dimensionful couplings appear
for instance in supersymmetric (SUSY) theories — like the Minimal Supersymmetric SM (MSSM)
— which predict trilinear couplings between the Higgs bosons and the SUSY partners of the SM
fermions. Among these, the trilinear coupling between the stops (the SUSY partners of top quarks)
and the SM-like Higgs boson is of particular importance. This “stop mixing parameter” is typically
the largest of the trilinear couplings and it controls the Higgs–stop–stop interaction itself as well as
the mass splitting between the stops.

If an extended scalar sector is discovered at the LHC or a future collider, the measurements of
the interactions between the various scalars will be crucial to pinpoint the underlying theory. With
this motivation, we discussed in Ref. [1], for the specific case of the MSSM stop mixing parameter
𝑋𝑡 , how this coupling could be extracted from experimental measurements, and how to define it
properly in theoretical predictions. We investigated different methods to extract the stop mixing
parameters from experiments, pointing out difficulties of the various approaches and emphasising
the crucial role of the mass of the SM-like Higgs boson. In turn, we examined appropriate choices of
renormalisation schemes for the stop mixing parameter in Higgs-mass calculations. In this process,
we clarified the origin of large Sudakov-like logarithms plaguing Higgs-mass predictions in the
on-shell scheme when combining fixed-order and EFT techniques. To avoid their occurrence, we
proposed to use a mixed scheme where the stop mixing parameter is renormalised in the DR/MDR
scheme, while the stop masses are renormalised on-shell.

2. Experimental probes of 𝑋𝑡

We begin by reviewing in this section different possible methods to access the stop mixing
parameter 𝑋𝑡 experimentally. We refer the reader to 𝑒.𝑔. Ref. [1] for a description of the stop sector
in the MSSM. We recall that 𝑋𝑡 is defined as 𝑋𝑡 ≡ 𝐴𝑡 − ` cot 𝛽, with 𝐴𝑡 the soft SUSY-breaking
stop trilinear coupling, ` the Higgsino mass parameter (assumed here to be real for simplicity) and
tan 𝛽 ≡ 𝑡𝛽 the ratio of the vacuum expectation values of the two Higgs doublets. A first option to
access 𝑋𝑡 is to consider the stop mass eigenvalues, which depend on 𝑋𝑡 as
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Here 𝑚𝑡𝐿 and 𝑚𝑡𝑅 denote the soft SUSY-breaking stop mass parameters, 𝑚𝑡 and 𝑀𝑍 the top-quark
and 𝑍-boson masses respectively, and 𝑠𝑊 is the sine of the weak mixing angle. The dependence of
these mass eigenvalues on 𝑋𝑡 is, however, significantly reduced as 𝑀SUSY ≡ √

𝑚𝑡𝐿𝑚𝑡𝑅 increases.
Additionally, extracting 𝑋𝑡 from 𝑚𝑡1,2 requires some extra information or assumption about the
relation between the soft stop mass parameters: indeed, the knowledge of two mass eigenvalues is
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Figure 1: 𝑀ℎ as a function of 𝑋𝑡 ≡ 𝑋𝑡/𝑀SUSY. Left: The blue curve displays 𝑀ℎ for 𝑡𝛽 = 8 in a single-scale
scenario with 𝑀SUSY = 10 TeV, where all BSM mass terms are set to 𝑀SUSY and all trilinear couplings, except
𝐴𝑡 , are set to zero. The gray points are obtained by varying mass parameters and trilinear couplings 𝐴 𝑓≠𝑡

randomly within [1/2𝑀SUSY, 2𝑀SUSY]. Right: Same as left plot, but with 𝑡𝛽 = 3 and 𝑀SUSY = 100 TeV.

obviously not enough to extract the three parameters 𝑚𝑡𝐿 , 𝑚𝑡𝑅 , and 𝑋𝑡 . Supposing that one were
to obtain a third input in the form of the stop mixing angle \𝑡 (by itself a challenging quantity to
measure [2]), one would only find sensitivity to 𝑋𝑡 if there is a significant splitting between 𝑚𝑡𝐿

and 𝑚𝑡𝑅 . Moreover, the dependence of \𝑡 on 𝑋𝑡 becomes very small for increasing 𝑀SUSY. In other
words, for high 𝑀SUSY, even if one could build a collider allowing to measure the stop masses 𝑚𝑡𝑖

and the mixing angle \𝑡 , it would still not be possible to obtain accurate information about 𝑋𝑡 .

Another option is to consider decay processes in which the parameter 𝑋𝑡 enters at the tree level,
such as 𝑡2 → 𝑡1ℎ. Such a decay process is, however, only useful if both its corresponding decay
width and branching ratio are sufficiently large to allow precise measurements, which depends
strongly on the SUSY mass spectrum. For instance, if the stops are too close in mass, or if other
decay channels are open (𝑒.𝑔. if there are relatively light electroweakinos), then the 𝑡2 → 𝑡1ℎ decay
does not allow a reliable extraction of 𝑋𝑡 — as was also illustrated numerically in Ref. [1].

Finally, while it may seem like 𝑋𝑡 simply has no further phenomenological impact if 𝑀SUSY

becomes large, there is one observable that does exhibit a significant dependence on 𝑋𝑡 even for
large 𝑀SUSY: the Higgs-boson mass 𝑀ℎ. Indeed in SUSY theories, because of the additional
underlying symmetry, 𝑀ℎ can be computed as a function of model parameters — see 𝑒.𝑔. the recent
review [3]. Together with 𝑀SUSY and 𝑡𝛽 , the stop mixing parameter 𝑋𝑡 , which enters the prediction
of 𝑀ℎ from one-loop order, is among the quantities with the strongest influence on 𝑀ℎ. This is
illustrated in fig. 1 where 𝑀ℎ, computed with FeynHiggs 2.18.1 [4, 5], is shown as a function
of 𝑋𝑡 ≡ 𝑋𝑡/𝑀SUSY, in scenarios with 𝑀SUSY = 10 TeV and 𝑡𝛽 = 8 (left) or 𝑀SUSY = 100 TeV
and 𝑡𝛽 = 3 (right), and compared with the present 1𝜎 experimental uncertainty (orange band). The
blue (left) and green (right) curves correspond to the Higgs-boson mass in single-scale scenarios
where all BSM masses are equal to 𝑀SUSY while all soft trilinear terms other than 𝐴𝑡 are set to
zero. These results indicate that a comparison of the already very precise measurement of 𝑀ℎ with
high-precision predictions for it offers the best prospects to access 𝑋𝑡 experimentally. Moreover,
the gray points, obtained by randomly scanning on masses and trilinear couplings (other than 𝐴𝑡 ) in
the range [1/2𝑀SUSY, 2𝑀SUSY], show that an imprecise knowledge of the SUSY spectrum would
not severely degrade the extraction of 𝑋𝑡 from 𝑀ℎ.
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Figure 2: Comparison of
𝛿 (1) (𝑚𝑡𝑋𝑡 )/(𝑚𝑡𝑚𝑡𝐿 ) calcu-
lated without any expansion
(red solid line), calculated in
the limit 𝑣/𝑀SUSY → 0 with
𝑚𝑡𝐿 ≠ 𝑚𝑡𝑅 (blue dashed),
and calculated in the limit
𝑣/𝑀SUSY → 0 with 𝑚𝑡𝐿 =

𝑚𝑡𝑅 (black dotted).

3. Renormalisation of 𝑋𝑡 in Higgs-boson mass calculations

Having shown that the Higgs-boson mass offers the best possibility to access 𝑋𝑡 , we investigate
now appropriate choices of renormalisation schemes for 𝑋𝑡 in the context of Higgs-mass computa-
tions. Detailed discussions of renormalisation schemes for 𝑋𝑡 can be found 𝑒.𝑔. in Refs. [6], while
the different approaches for Higgs-mass calculations are reviewed at length in Ref. [3]. Three main
methods can be distinguished: fixed-order calculations, reliable for low 𝑀SUSY and in which a full
on-shell (OS) renormalisation is possible; EFT calculations, allowing a consistent resummation of
large logarithms occurring for higher values of 𝑀SUSY— EFT computations are, however, usually
performed only to leading order in the 𝑣/𝑀SUSY expansion (see Ref. [7] for an exception) and are
therefore less reliable for low 𝑀SUSY; and lastly, hybrid calculations, combining the fixed-order
approach with an EFT-like resummation of large logarithms. For EFT computations, a DR (or an
MDR1) scheme is preferred to prevent large logarithms in the calculation of threshold corrections.
In hybrid calculations, an OS renormalisation is simple to implement in the fixed-order part of
the calculation, while a DR or MDR one is preferred in the EFT part. This shows the need of a
renormalisation-scheme conversion of 𝑋𝑡 in typical hybrid calculations.

This conversion is, however, plagued by large logarithms: indeed, the relation between 𝑋𝑡 in
the OS and in the DR schemes is

𝑋OS
𝑡 = 𝑋DR

𝑡 (𝑀SUSY)
𝑚

DR,MSSM
𝑡 (𝑀SUSY)

𝑚OS
𝑡

− 1
𝑚OS

𝑡

𝛿 (1) (𝑚𝑡𝑋𝑡 )
����
fin
. (2)

Both terms on the right-hand side of this equation contain large logarithms, and while for the first
term the logarithms can be resummed via renormalisation-group running, this is not the case for
the second term. This term indeed is more complicated, in particular as it is necessary to expand it
in powers of 𝑣/𝑀SUSY in the context of an EFT or hybrid calculation — in order not to mix orders
in the EFT expansion. Depending on whether one considers 𝑚𝑡𝐿 and 𝑚𝑡𝑅 equal or not, one obtains
two different expressions for the O(𝛼𝑡 ) corrections to 𝛿 (1) (𝑚𝑡𝑋𝑡 ), namely

1The MDR scheme [8] redefines the finite parts of the stop sector counterterms in order to avoid unphysical non-
decoupling effects if the gluino is significantly heavier than the stops.
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|𝑚2
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𝑡𝑅
|
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+ · · · .

(3b)

In both lines, the ellipsis denotes terms without large logarithms. Importantly, one finds that eq. (3a)
is not recovered when taking the limit 𝑚𝑡𝑅 → 𝑚𝑡𝐿 in eq. (3b).2 This discrepancy in the behaviour
of the two results is also illustrated in fig. 2, which shows 𝛿 (1) (𝑚𝑡𝑋𝑡 )/(𝑚𝑡𝑚𝑡𝐿 ) as a function of the
ratio 𝑚𝑡𝑅/𝑚𝑡𝐿 . The black dotted line corresponds to the result of eq. (3a), the blue dashed line to
eq. (3b), while the red solid line is the full result (without an EFT expansion in 𝑣/𝑀SUSY). The large
logarithms in eqs. (3a) and (3b) were found in Ref. [9] to be connected to infrared (IR) singularities
stemming from external-leg corrections — and in this language, eqs. (3a) and (3b) differ by the way
in which the IR divergences are regulated (see Ref. [9]). While it is expected that a resummation of
these large logarithms can be achieved with soft-collinear effective field theory, an explicit two-loop
calculation in Ref. [9] has shown that logarithmic corrections of this type are typically of moderate
size beyond one loop. Nevertheless, the presence of sizeable terms, as well as the lack of a smooth
transition between the 𝑚𝑡𝐿 = 𝑚𝑡𝑅 and 𝑚𝑡𝐿 ≠ 𝑚𝑡𝑅 cases, indicate that avoiding the need for a scheme
conversion within hybrid calculations would be desirable. Therefore, our conclusion is that it is
preferable to employ a DR/MDR renormalisation scheme for 𝑋𝑡 in both fixed-order and EFT parts
of hybrid computations of 𝑀ℎ. We note, however, that mixed DR-OS schemes can give rise to
complications from uncancelled 𝜖1 pieces of loop integrals at higher orders — see Ref. [1]

4. Summary
An interesting possibility in models with extended scalar sectors is that of new types of

interactions, like trilinear couplings that are not induced by a vacuum expectation value. We have
focused here on the stop mixing parameter 𝑋𝑡 of the MSSM, which controls the interaction between
the stops and Higgs bosons. We first discussed different approaches to access 𝑋𝑡 via experimental
measurements, finding that 𝑀ℎ offers the best way to determine 𝑋𝑡 (once the stop masses and
tan 𝛽 are known). Indeed, this observable exhibits sensitivity to 𝑋𝑡 irrespective of the stop mass
hierarchy, and even for high 𝑀SUSY. Decays of stops provide another option, but which is highly
dependent on the sparticle spectrum (𝑖.𝑒. which decay channels are open), and is thus only useful
for parts of the parameter space. Next, we considered which choice of renormalisation scheme is
most suitable for 𝑋𝑡 , given the current state-of-the-art of Higgs-mass calculations. In particular,
we investigated the conversion of 𝑋𝑡 from an OS scheme (convenient for fixed-order calculations)
to the DR/MDR scheme (preferred for EFT calculations or the EFT part of hybrid calculations),
and we clarified the origin of large logarithms appearing therein. We identified a class of large
logarithms that cannot be resummed via standard EFT techniques and whose form depends on the
limit in which the EFT expansion is performed. This led us to conclude that for the determination
of 𝑋𝑡 by confronting a hybrid calculation of 𝑀ℎ with its measured value, it is most advantageous to
adopt, in both fixed-order and EFT parts of the computation, a DR/MDR renormalisation for 𝑋𝑡 .

2We note that this behaviour differs from that of the O(𝛼𝑠) corrections, involving only diagrams with fermions or
gauge bosons, in which a smooth limit exists.
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