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We study the one-loop renormalisation of 4d SU(N) Yang-Mills theory with 𝑀 adjoint repre-
sentation scalar multiplets. We calculate the coupled one-loop renormalization group flows for
this theory by developing an algebraic description, which we find to be characterised by a non-
associative algebra of marginal couplings. The 4d one-loop beta function of the gauge coupling
𝑔2 vanishes for the case 𝑀 = 22, which is intriguing for string theory. There are real fixed flows
(fixed points of 𝜆/𝑔2) only for 𝑀 ≥ 406, rendering one-loop fixed points of the gauge coupling
and scalar couplings incompatible.
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One-loop RG flow for adjoint multiscalar gauge theory Nadia Flodgren

1. Introduction

Gauge interactions have been argued to be necessary for weakly coupled UV fixed points in
4D QFTs [1, 2]. We study the one-loop RG flow of multiscalar gauge theory in 4D at large N with
massless adjoint scalars that interact quartically. The adjoint scalar gauge theories are of interest
due to their use in describing the dynamics on branes in 𝐷3−brane theories in string theory. In
our model the adjoint scalar multiplets are invariant under 𝑂 (𝑀) symmetry and the gauge group is
𝑆𝑈 (𝑁). The quartic interaction term is

L𝑖𝑛𝑡 = − 1
4!
𝜆 �̄��̄��̄��̄�𝜙 �̄�𝜙�̄�𝜙�̄�𝜙�̄� . (1)

The multi-index �̄� = 𝑎𝐴 where 𝑎 = 1, . . . , 𝑀 is the scalar multiplet index and 𝐴 = 1, . . . , 𝑁2 − 1 is
the Lie algebra index.

This presentation is based on my work with Bo Sundborg [3].

2. Algebraic description of one-loop RG flow of adjoint multiscalar gauge theory

The general one-loop beta functions for a multiscalar gauge theory are [4, 5]

𝜇
𝑑

𝑑𝜇
𝜆 �̄��̄��̄��̄� = 𝛽 �̄��̄��̄��̄� =

1
(4𝜋)2

(
Λ2
�̄��̄��̄��̄�

− 3𝑔2Λ𝑆
�̄��̄��̄��̄�

+ 3𝑔4𝐴�̄��̄��̄��̄�

)
, (2)

where

Λ2
�̄��̄��̄��̄�

=
1
8

∑︁
perms

𝜆 �̄��̄��̄� �̄�𝜆�̄� �̄��̄��̄�

Λ𝑆
�̄��̄��̄��̄�

=
∑︁
𝑖

𝐶 (𝑖)𝜆 �̄��̄��̄��̄�

𝐴�̄��̄��̄��̄� =
1
8

∑︁
perms

{𝜃𝐸 , 𝜃𝐹 } �̄��̄�{𝜃𝐸 , 𝜃𝐹 }�̄��̄� .

(3)

The gauge coupling is called 𝑔, the sum over permutations is over the permutations of the multi-
indices, the sum over 𝑖 is over the external legs, 𝐶 (𝑖) is the quadratic Casimir 𝐶2(𝐺) for the gauge
group 𝐺 and 𝜃𝐶

�̄��̄�
is a reducible representation of the gauge Lie algebra.

The one-loop beta functions for multiscalar gauge theory can be characterized by an algebra, as
described in more detail in our work [3]. We consider only marginal quartic couplings 𝜆 �̄��̄��̄��̄� and
can think of the couplings as a vector space. For a purely scalar theory the one-loop beta function
𝛽𝜆 is quadratic in 𝜆, as is seen from the scalar-scalar interaction term in (3). This allows us to define
a product of the marginal couplings

𝜆 � 𝜅 ≡ (4𝜋)2

2
(𝛽𝜆+𝜅 − 𝛽𝜆 − 𝛽𝜅 ). (4)

Here we ignored the gauge terms in the beta functions since they do not affect the product. The
product is commutative but not generally associative.

It is useful to express the algebra using a basis of symmetric rank four tensor structures
𝑔𝑘
�̄��̄��̄��̄�

where 𝜆 �̄��̄��̄��̄� = 𝜆𝑘𝑔
𝑘

�̄��̄��̄��̄�
. The basis elements 𝑔𝑘

�̄��̄��̄��̄�
are the tensor structures of the

2
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marginal operators of the theory, i.e. the quartic invariants (indexed by 𝑘). The beta function is
𝛽 �̄��̄��̄��̄� = 𝛽𝑘𝑔

𝑘

�̄��̄��̄��̄�
where 𝛽𝑘 =

𝑑𝜆𝑘
𝑑 ln(𝜇) . We define the product

(𝑔𝑚 � 𝑔𝑛) �̄��̄��̄��̄� =
1
8

∑︁
perms

𝑔𝑚
�̄��̄��̄��̄�

𝑔𝑛
�̄��̄��̄��̄�

= 𝐶𝑚𝑛𝑘 𝑔𝑘
�̄��̄��̄��̄�

. (5)

The coefficients 𝐶𝑚𝑛
𝑘

are the structure constants of the algebra. The product is known as the
∨-product in [6]. The beta function is

(4𝜋)2𝛽𝑘 = (𝜆𝑚𝜆𝑛𝐶𝑚𝑛𝑘 − 3𝑔2𝐶1𝜆𝑘 + 3𝑔4𝑑𝑘), (6)

where 𝑑𝑘 are the coefficients of the gauge induced term and 𝐶1 = 4𝐶2(𝐺).
Let us study the specific example of our 𝑆𝑈 (𝑁)×𝑂 (𝑀) model, which has four quartic invariants

indexed by 𝑘 = 1𝑠, 1𝑡, 2𝑠, 2𝑡. They correspond to the symmetric tensor structures via1
1
4!
𝑔1𝑠
�̄��̄��̄��̄�

𝜙 �̄�𝜙�̄�𝜙�̄�𝜙�̄� =
1
2

TrΦ𝑎Φ𝑎Φ𝑏Φ𝑏
1
4!
𝑔1𝑡
�̄��̄��̄��̄�

𝜙 �̄�𝜙�̄�𝜙�̄�𝜙�̄� =
1
4

TrΦ𝑎Φ𝑏Φ𝑎Φ𝑏
1
4!
𝑔2𝑠
�̄��̄��̄��̄�

𝜙 �̄�𝜙�̄�𝜙�̄�𝜙�̄� =
1
2

TrΦ𝑎Φ𝑎 TrΦ𝑏Φ𝑏
1
4!
𝑔2𝑡
�̄��̄��̄��̄�

𝜙 �̄�𝜙�̄�𝜙�̄�𝜙�̄� = TrΦ𝑎Φ𝑏 TrΦ𝑎Φ𝑏,

(7)

where Φ𝑎 = 𝜙 �̄�𝑇𝐴 belongs to the adjoint representation and 𝑇𝐴 is matrix in the fundamental
representation2. The superscripts 𝑠 and 𝑡 stand for scalar and tensor product respectively, and 1 and
2 stand for single-trace and double-trace respectively.

To take the large 𝑁 limit of the algebra for 𝑔𝑘 we must first rescale the couplings 𝜆𝑘 in order to
keep the ’t Hooft couplings 𝜆𝐾 constant: 𝜆1𝑆 = 𝑁𝜆1𝑠, 𝜆1𝑇 = 𝑁𝜆1𝑡 and 𝜆2𝑆 = 𝑁2𝜆2𝑠, 𝜆2𝑇 = 𝑁2𝜆2𝑡 .
The basis elements 𝑔𝑘 are rescaled to 𝑔𝐾 accordingly to keep 𝜆𝑘𝑔

𝑘 = 𝜆𝐾𝑔
𝐾 constant. Taking the

large 𝑁 limit and dropping sub-leading terms simplifies the algebra. The algebra at large 𝑁 for the
basis 𝑔𝐾 is

𝑔1𝑆 � 𝑔1𝑆 =
1
2
(𝑀 + 3)𝑔2𝑆 + 1

2
𝑔2𝑇 + 1

2
(𝑀 + 3)𝑔1𝑆

𝑔1𝑇 � 𝑔1𝑇 =
1
8
(𝑀 + 2)𝑔2𝑇 + 1

2
𝑔1𝑆

𝑔1𝑆 � 𝑔1𝑇 =
1
2
𝑔2𝑆 + 1

2
𝑔2𝑇 + 1

2
𝑔1𝑆 + 𝑔1𝑇

𝑔2𝑆 � 𝑔2𝑆 = 𝑀𝑔2𝑆

𝑔2𝑇 � 𝑔2𝑇 = 2𝑔2𝑇

𝑔2𝑆 � 𝑔2𝑇 = 2𝑔2𝑆

𝑔1𝑆 � 𝑔2𝑆 = (𝑀 + 1)𝑔2𝑆

𝑔1𝑆 � 𝑔2𝑇 = 2𝑔2𝑆 + 𝑔2𝑇

𝑔1𝑇 � 𝑔2𝑆 = 𝑔2𝑆

𝑔1𝑇 � 𝑔2𝑇 = 𝑔2𝑇 .

(8)

1Note that we will from now on suppress the multi-indices when writing the basis elements 𝑔𝑘
�̄��̄��̄��̄�

→ 𝑔𝑘 .
2We use the normalization Tr(𝑇𝐴𝑇𝐵) = 1

2 𝛿𝐴𝐵 of the fundamental representation matrices 𝑇𝐴.
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The large 𝑁 algebra has several closed sub-algebras, {𝑔2𝑆}, {𝑔2𝑇 }, {𝑔2𝑆 , 𝑔2𝑇 }, {𝑔1𝑆 , 𝑔2𝑆 , 𝑔2𝑇 },
and two ideals {𝑔2𝑆}, {𝑔2𝑆 , 𝑔2𝑇 }. The brackets {} denote a linear space with the �-product that is
spanned by the elements in the brackets. The algebra indicates which couplings induce running in
other couplings. For example, the closed sub-algebra {𝑔2𝑇 } indicates that a theory with the only
non-zero coupling3 being 𝜆2𝑇 is renormalizable in this limit. The ideals are closed sub-algebras
that are stable under perturbations of elements outside the ideal. The sub-algebra {𝑔2𝑆} is an ideal
because all products with 𝑔2𝑆 in (8) result only in the element itself. Physically the beta functions
of the quotient algebra of an ideal are independent of the couplings in the ideal, giving the RG
equations a hierarchical structure.

3. Results: one-loop RG flow for adjoint multiscalar gauge theory

Let us take a look at the beta functions for our model. The one-loop beta function for the gauge
coupling vanishes for 𝑀 = 22 adjoint scalars

𝛽𝑔 = − 𝑔3

16𝜋2
22 − 𝑀

6
𝐶2(𝐺). (9)

The RG flow is asymptotically UV free for 𝑀 < 22 and IR free for 𝑀 > 22. The critical value
of 𝑀 = 22 has been noted before in [7]. The critical value intrigued us as it could indicate a
string theory connection since 22 adjoint scalars in 4D would correspond to a low energy limit of
𝑁 parallel 𝐷3-branes in 26 = 22 + 4 dimensions (the critical dimension of bosonic strings).

From the algebra (8) we calculate the scalar coupling beta functions, apart from the gauge
induced terms which are calculated separately. We find no real fixed points for 𝑀 = 22 scalars. In
order to relate to possible fixed points for a running gauge coupling we calculate the beta functions
for the relative couplings 𝜇𝐾 = 𝜆𝐾 /𝑔2. A fixed point for a relative coupling is called a fixed flow.
The beta functions for the relative couplings at large 𝑁 are

𝛽1𝑆 (𝜇) =
𝑁𝑔2

16𝜋2

(
𝑀 + 3

2
𝜇1𝑆𝜇1𝑆 +

1
2
𝜇1𝑇 𝜇1𝑇 + 𝜇1𝑇 𝜇1𝑆 −

(
𝑀 − 22

3
+ 12

)
𝜇1𝑆 + 6

)
𝛽1𝑇 (𝜇) =

𝑁𝑔2

16𝜋2

(
2𝜇1𝑇 𝜇1𝑆 −

(
𝑀 − 22

3
+ 12

)
𝜇1𝑇

)
𝛽2𝑆 (𝜇) =

𝑁𝑔2

16𝜋2

(
𝑀𝜇2𝑆𝜇2𝑆 +

(𝑀 + 3)
2

𝜇1𝑆𝜇1𝑆 + 4𝜇2𝑆𝜇2𝑇 + 2𝜇2𝑆𝜇1𝑇 + 2(𝑀 + 1)𝜇2𝑆𝜇1𝑆

+4𝜇2𝑇 𝜇1𝑆 + 𝜇1𝑇 𝜇1𝑆 −
(
𝑀 − 22

3
+ 12

)
𝜇2𝑆 + 6

)
𝛽2𝑇 (𝜇) =

𝑁𝑔2

16𝜋2

(
2𝜇2𝑇 𝜇2𝑇 + 1

2
𝜇1𝑆𝜇1𝑆 +

𝑀 + 2
8

𝜇1𝑇 𝜇1𝑇 + 2𝜇2𝑇 𝜇1𝑇 + 2𝜇2𝑇 𝜇1𝑆 + 𝜇1𝑇 𝜇1𝑆

−
(
𝑀 − 22

3
+ 12

)
𝜇2𝑇 + 6

)
.

(10)

Note that these beta functions are dependent on 𝑀 but independent of the flow of the gauge coupling,
meaning we can treat 𝑔 as a constant in searching for fixed points of the relative couplings.

3Note that the gauge coupling or its coefficients 𝑑𝐾 in 𝛽𝐾 must also be vanishing here.
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(a) Single-trace RG flow for 𝑀 = 425. (b) Double-trace RG flow for 𝑀 = 425.

Figure 1: The RG flow for 𝑀 = 425 in the single-trace space 1a and double-trace space 1b. The single-trace
space has one UV stable fixed flow (purple dot) and one of mixed stability (green dot). The double-trace
space has four fixed flows (two for each blue dot) which are shown in Figure 2.

(a) Double-trace RG flow for 𝑀 = 425, lower
feature.

(b) Double-trace RG flow for 𝑀 = 425, upper
feature.

Figure 2: Double-trace RG flow for 𝑀 = 425. The lower feature has one UV stable fixed flow and one of
mixed stability. The upper feature has one IR stable fixed flow (red dot) and one of mixed stability. Together
the four fixed flows form a parallelogram which no flow can escape.

In the beta functions (10) we can observe the implication of the quotient algebra of the double-
trace ideal {𝑔2𝑆 , 𝑔2𝑇 }, i.e. that 𝛽1𝑆 and 𝛽1𝑇 are independent of the double-trace couplings 𝜆2𝑆 , 𝜆2𝑇 ,
and the implication of the ideal {𝑔2𝑆}, which is that only 𝛽2𝑆 depends on 𝜆2𝑆 .

In the space of single-trace couplings (𝜆1𝑆 , 𝜆1𝑇 ) there are real fixed flows only for 𝑀 ≥ 82, for
which there exists one UV-stable and one mixed stability fixed flow, see Figure 1a. The RG flow of
the double-trace coupling space (𝜆2𝑆 , 𝜆2𝑇 ) is seen in Figure 1b and 2. In this space there are only
real fixed flows for 𝑀 ≥ 406. In the range 406 ≤ 𝑀 ≤ 427 there are four real fixed flows (one IR
stable, one UV stable and two of mixed stability) and for 𝑀 ≥ 428 there are eight real fixed flows.

5
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In conclusion, the RG flow of the complete space of marginal quartic couplings only has real
fixed flows for 𝑀 ≥ 406, for which the gauge coupling is IR free. Therefore, no complete gauge
coupling and scalar coupling fixed point exists for the adjoint multiscalar gauge theory at large 𝑁

to one-loop order.

4. Outlook

So far we have only studied the regular large 𝑁 limit but there exists other possible large 𝑁

limits we want to investigate, such as a Veneziano-like limit where both 𝑁 and 𝑀 are large. We are
interested in seeing whether the algebra itself can tell us which limits have interesting RG flows.

Concerning the specific 𝑆𝑈 (𝑁) ×𝑂 (𝑀) model we studied, one could consider the case 𝑀 = 22
but for a complex CFT and look for stable complex CFTs. The stability of the potential, in the sense
of a theory bounded from below, at the fixed points would then need to be checked.

The main unanswered question we have is if the algebraic description of the RG flow can be
adapter to higher loop orders. Related to this, we have also thought about studying the RG flow
of models with different fields and interactions via the algebra, to see if the algebra can give new
insights. Generalizing out method should be fairly simple since it relies on very general known
one-loop equations.
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