

The LHCb Mighty Tracker

² Karol Hennessy^{*a*,*} and LHCb Mighty Tracker Group

³ ^aUniversity of Liverpool,

6

- 4 Oliver Lodge Laboratory, Liverpool L69 7ZE, U.K.
- 5 *E-mail:* karol.hennessy@cern.ch

The LHCb detector is set to undergo a significant upgrade during the upcoming long shutdown 4 of the LHC. This upgrade will result in a nearly tenfold increase in instantaneous luminosity, reaching 1.5×10^{34} cm² s⁻¹, with an integrated luminosity expected to rise from 50 fb⁻¹ to 300 fb⁻¹. To effectively handle the elevated track densities, the downstream tracking stations will employ silicon pixel sensors in the inner region where particle fluences are highest. The MightyPix ASIC is a Monolithic HV-CMOS sensor based on the HV-MAPS families MuPix and ATLASPix, specifically designed to meet the requirements of LHCb. The Mighty Tracker silicon detector will covering an extensive active area of 18 m^2 will comprise over 2×10^9 pixels. The first iteration of the chip, along with its features and design are presented. Notable recent advances in the mechanical and electronic design of the silicon modules are also shown. Progress on prototyping developments, which focus on simulation, verification and FPGA emulation work are outlined. The latest beam test campaigns have yielded valuable insights into the radiation performance of precursor chips of the MightyPix. Noteworthy highlights are presented, accompanied by plans in place to maximise the chip's performance.

The European Physical Society Conference on High Energy Physics (EPS-HEP2023) 21-25 August 2023 Hamburg, Germany

*Speaker

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

Introduction 1. 7

2.

20

The Large Hadron Collider Beauty detector [2][3] is a flavour physics detector, designed to 8 detect decays of b- and c-hadrons for the study of CP violation and rare decays. In Long Shutdown 4 q of the LHC, the detector will be installed and commissioned the second upgrade of the experiment 10 [1], with the goal of significantly increasing its data taking capability. The peak instantaneous 11 luminosity will increase to 1.5×10^{34} cm² s⁻¹ to fully exploit the High Luminosity LHC. In order 12 to meet this luminosity requirement, the granularity of all detector components will be increased. 13 Furthermore, the new components must be more radiation tolerant due to the ensuing increase in 14 particle flux. 15

The tracking stations for LHCb Upgrade I, known as Sci-Fi, consist of six layers of scintillating 16 fibres. To cope with the increased pile-up in Upgrade II, the inner section of the Sci-Fi will be 17 replaced with a silicon pixel detector. This new detector, combining both pixel and fibre elements 18

19

Occupancy [1 / fiber event 0.16 – SciFi 0.14 SciFi + Si Pixe 0.12 Silicon 0.1 0.08 0.06 0.04 0.02 0 -2000 2000 x [mm]

Figure 1: L: Mighty Tracker: the outer region shows the scintillating fibre tracker, and the inner region (blue) shows the silicon pixel layer. R: The occupancy of the scintillating fibres without and with the silicon layer.

The Mighty Tracker is required to be (1) low-mass: to minimise the number of secondary 21 particles produced by detector interactions; (2) cooled below 0° C: to minimise detector aging; (3) 22 have good spatial resolution: to provide adequate particle track reconstruction. 23

Fig. 1L shows the Mighty Tracker design geometry and dimensions. The total silicon area 24 is approximately 18 m². The increased luminosity and radiation damage in Upgrade II would 25 significantly degrade the tracking performance of Sci-Fi to 50%. Fig. 1R shows that the addition 26 of the pixel layer greatly improves the performance by reducing the occupancy in the fibres to a 27 manageable level. 28

2.1 MightyPix 29

The Mighty Tracker design centres around a new pixel ASIC - the MightyPix. It is based on 30 the ATLASPix[4] and MuPix[5] family of chips, using the TSI 180 nm process. The ASIC is a 31

³² HV-CMOS design [6] with sensor and readout circuit on the same silicon die. The chip is required ³³ to have a pixel size less than $100 \,\mu\text{m} \times 300 \,\mu\text{m}$, an in-time efficiency of greater than 99% and a ³⁴ radiation tolerance of $6 \times 10^{14} \text{ MeV} \cdot n_{eq}/\text{cm}^2$.

The first version of the chip (MightyPix1) has been produced this year (shown in Fig. 2). The chip is 200 μ m thick and approximately 2 cm \times 0.5 cm in size. As such it has full column length of the final design but only one quarter width. The full design is segmented in four identical column readout regions, and so results from testing the one quarter width MightyPix1 are expected to have negligible difference to the full size chip. Full compatibility with the LHCb timing and control system are not fully realised in MightyPix1. These features are planned for the second version of the chip.

At the time of write testing had only begun on MightyPix1. Preliminary testing shows major features are working including, but not limited to, configuration and readback, timing synchroni-

sation, resetting, low speed data readout. These initial results are promising; and the chip will be

taken for beam tests in 2024 where the required chip performances for Upgrade II will be studied.

Figure 2: MightyPix1 wire-bonded to a PCB for testing. (*Photograph courtesy of Karlsruhe Institute of Technology.*)

3. Detector & Module Design

The Mighty Tracker consists of six layers of silicon planes. Each layer is composed of 28 modules. The modules have two variants - long and short. There are only two short modules per layer, situated left and right of the LHCb beam pipe. The module are populated front and back to make best use of the available space (see Fig. 3). Power dissipation in the sensor region is expected to be ~150 mW/cm².

Prototype module substrates are being developed at the University of Manchester, to investigate assembly procedures and measure cooling performance. Fig. 4 shows an example of carbon fibre and carbon foam substrate samples. X-ray tomography is used to check for inconsistencies in the produced samples.

56 4. Electronics and Readout

The modules employ CERN radiation hard components for the electronics design. These include the low power GigaBit Transceiver (lpGBT) [7] and Versatile Link Plus components[8]. In

Figure 3: T: Current design of the inner short modules. The modules are sub-divided into sub-modules. **B**: Module cross-section.

Figure 4: L: Prototype carbon-foam substrates R: X-ray tomography of substrate samples (*(pictures courtesy of U. Manchester*).

the baseline design DCDCs [9] are used for powering both the MightyPix and the other components on the modules. However, given power requirements and space constraints, Serial Powering [10] is strongly being considered for Mighty Tracker. This has the added advantage of reducing the material in the detector acceptance.

⁶³ Due to the higher particle flux in the innermost region of the detector, the modules near the ⁶⁴ beam pipe require more readout capability than those on the exterior of the detector. Monte-Carlo ⁶⁵ simulations at Upgrade II luminosities have been prepared, and studies have been performed to ⁶⁶ determine the bandwidth as a function of detector geometry [11]. The number of electronic and ⁶⁷ optical links and their speed required for each module is being optimised. The innermost MightyPix ⁶⁸ require four links at 1280 Mb/s whilst the outermost only require one link at 320 Mb/s.

In order to catch potential digital design problems with MightyPix, several design strategies have been employed. A verification framework has been developed to test the conformity of MightyPix to the LHCb timing and fast control system, and to test the bandwidth limitation of the chip (results are described in the next section). An chip emulator is under development using an FPGA to mimic the behaviour of the MightyPix1. The code for the digital design of the chip has

been ported to FPGA, and a configurable data generator has been added in place of the analogue 74 components. An Enclustra Mercury KX1 has been used for the FPGA. A carrier board has been 75 developed at University of Bonn for prototyping the MightyPix. This is connected to a Versatile 76 Link Demonstrator Board (VLDB+)[12] with an lpGBT. In this manner, communication between 77 the lpGBT and emulated MightyPix can be tested, including timing, control and output data at 78 different rates. The same carrier board will be used to test the initial versions of MightyPix. This 79 allows functional tests to be carried out prior to chip resubmission. 80 The VLDB is also used to test communication with the backend electronics. Currently a Xilinx 81

KCU105 FPGA Evaluation board is used for testing the readout chain. lpGBT firmware is being
 ported to the Intel FPGA platform which is used in LHCb. These systems can be adapted to test the
 signal integrity of data from the MightyPix in the first module designs.

5. Performance studies

The MightyPix verification framework has been used to measure how the chip performs at high data rates. The maximum expected hit rate for MightyPix1 chips closest to the beam line is 17 MHz/cm², as estimated using LHCb simulation. Poisson distributed data normalised to match different LHCb data rates has been fed into a model of the pixel matrix, and the output of the model is compared to measure the efficiency. Fig. 5 show the efficiency as a function of hit rate. The efficiency stays above 99% above the maximum hit rate. Improvements to the remaining inefficiency are under development for MightyPix2 and outlined in an upcoming paper [13].

Figure 5: L: Simulated MightyPix1 readout efficiency vs. hit rate The expected maximum rate of 17 MHz/ cm² and maximum available bandwidth of 20 MHz/ cm² are indicated by vertical lines **R**: A zoomed view showing the small efficiency loss above 99%.

The ATLASPix 3.1 has been under study in advance of the MightyPix. This is the closest full size chip in the HV-CMOS family. It has a pixel size of $50 \,\mu\text{m} \times 150 \,\mu\text{m}$ and a chip size of $2 \,\text{cm} \times 2 \,\text{cm}$, both of which are similar to the final MightyPix design. The amplifier and comparator of the chips are different so similar timing resolution is not expected. The primary interest in studying ATLASPix 3.1 is to determine its radiation hardness.

Beam tests were performed at the DESY Testbeam Facility in December 2022. Tests were performed at temperatures: 10, 0, and 5°C; and with three different irradiated samples: unirradiated,

 1×10^{14} MeV $\cdot n_{eq}$ /cm² and 3×10^{14} MeV $\cdot n_{eq}$ /cm². Fig. 6 shows the noise (dashed lines) and the 100 efficiency (solid lines) as a function of pixel hit threshold (in DAC counts). The ideal scenario in 101 this plot is to have a working threshold where both the noise remains low and the efficiency remains 102 high even under higher irradiations. In all cases but one, a threshold above 140 DACs would keep 103 the noise at a manageable level. However, the efficiency drops significantly above 140 DACs in 104 all cases; and it is worst at higher radiation doses. It is also clearly desirable to keep the chips at 105 lower temperature as performance suffers above 0°C. The design requirement for the MightyPix is 106 6×10^{14} MeV $\cdot n_{eq}/cm^2$, so the radiation tolerance needs a clear improvement for MightyPix. More 107 detail on these results is given in [14]. 108

Figure 6: ATLASPix 3.1 efficiency and noise as a function of pixel hit threshold (in DACs). Details are described in the text.

109 6. Conclusion

Progress in many aspects of the Mighty Tracker design has been shown. The electronic and 110 mechanical designs are evolving and prototypes for the module design are being produced and 111 studied. CERN radiation hard components are being used where possible and optimisations have 112 been made to limit the necessary number of readout channels. The first version of the MightyPix has 113 been produced and will be studied in detail in the next year, with improvements for the second version 114 already well underway in order to meet the full LHCb specifications. Simulation, verification and 115 emulation techniques are being employed to find issues in advance of chip submission. Results 116 from predecessors of MightyPix indicate that radiation performance is critical to meet the design 117 requirements. 118

119 References

- [1] LHCb Collaboration, *Framework TDR for the LHCb Upgrade II: Opportunities in flavour* physics, and beyond, in the HL-LHC era, CERN-LHCC-2021-012
- [2] LHCb Collaboration, The LHCb Detector at the LHC, JINST 3 (2008) S08005
- [3] LHCb Collaboration, Framework TDR for the LHCb Upgrade: Technical Design Report,
 CERN-LHCC-2012-007
- [4] M. Prathapan *et al.*, *ATLASpix3* : A high voltage CMOS sensor chip designed for AT LAS Inner Tracker, Proceedings of Topical Workshop on Electronics for Particle Physics
 PoS(TWEPP2019) **370** (2020)
- [5] H. Augustin *et al.*, *The MuPix sensor for the Mu3e experiment*, *Nucl. Instrum. Meth. A* 979 (2020)
- [6] Ivan Perić, A novel monolithic pixelated particle detector implemented in high-voltage CMOS
 technology, Nucl. Instrum. Meth. A 582 (2007)
- [7] P. Moreira *et al.*, *The lpGBT: a radiation tolerant ASIC for Data, Timing, Trigger and Control Applications in HL-LHC*,, Topical Workshop on Electronics for Particle Physics
 TWEPP2019 [Online]
- [8] CERN VL+ Project team, VL Plus System Specification, Online EDMS link
- [9] A. Affolder *et al.*, *DC-DC converters with reduced mass for trackers at the HL-LHC*, JINST
 6 (2011) C11035
- [10] V. Perovic, Serial powering in four-chip prototype RD53A modules for Phase 2 upgrade of the
 CMS pixel detector, Nucl. Instrum. Meth. A 978 (2020) 164436
- ¹⁴⁰ [11] D. Murray, Developing silicon pixel detectors for LHCb: constructing the VELO Upgrade and
- *designing a MAPS-based tracking detector*, CERN-THESIS-2021-325 (section 5.9)
- 142 [12] D.H. Montesinos et al., The Versatile Link+ Demo Board (VLDB+), JINST 17 (2022) C03032
- [13] S. Scherl et al., MightyPix at the LHCb Mighty Tracker Verification of an HV-CMOS Pixel
 Chipś Digital Readout, paper in preparation
- ¹⁴⁵ [14] K. Padeken et al., The LHCb Mighty Tracker, PoS Pixel2022 (2023) 084