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The High-Luminosity LHC (HL-LHC) will open an unprecedented window on the weak-scale
nature of the universe, providing high-precision measurements of the standard model as well as
searches for new physics beyond it. The CMS Collaboration is planning to replace entirely its
trigger and data acquisition systems to match this ambitious physics program. Efficiently collecting
datasets in Phase-2 will be a challenging task, given the harsh environment of 200 simultaneous
proton-proton interactions per HL-LHC bunch crossing. The already challenging implementation
of an efficient τ lepton trigger will become, in such conditions, an even more crucial and harder
task; especially interesting will be the case of hadronically decaying τ. To this end, the highly
upgraded capabilities of the Phase 2 Level-1 triggering system can be exploited to design new
complex machine learning based algorithms that are not yet implementable in the current Phase-1
system. Moreover, the foreseen high-granularity endcap calorimeter and the astonishing amount
of information it will provide play a key role in the design of novel τ lepton triggering methods.
In these proceedings, the development of a Level-1 trigger algorithm, with consistent barrel and
endcap treatment, for hadronically decaying τ based on the calorimetric information from the
ECAL, HCAL, and HGCAL detectors will be presented: the TauMinator. A completely new
and innovative design for a Level-1 trigger algorithm based on convolutional neural networks will
be shown alongside its preliminary FPGA firmware implementation. The Level-1 trigger latency
and resource availability constraints will also be discussed, and their role in the algorithm design
will be highlighted.
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1. Introduction

The High-Luminosity LHC (HL-LHC) is scheduled to start in 2029, and it will constitute the
Phase-2 of the LHC operations. It is designed to operate at a centre-of-mass energy of 14 TeV while
delivering an instantaneous luminosity of 5 − 7.5 · 1034 cm−2 s−1. These conditions correspond to
a number of simultaneous collisions (pileup, PU) per bunch crossing (BX) of O(200).

Efficiently collecting datasets to be used in the HL-LHC physics program will be challenging.
Therefore, the CMS Collaboration [1] is redesigning its hardware-implemented Level-1 Trigger
(L1T) [2]. The Phase-2 L1T will exploit state-of-the-art Field Programmable Grid Arrays (FPGAs)
and link technologies, providing a high-performance, low-latency, and high-throughput system in
which algorithms based on machine learning techniques will be widely employed [3].

These proceedings are structured as follows. Section 2 presents the innovative TauMinator
algorithm [4], its design and firmware implementation. Section 3 discusses the physics performance
attained by the algorithm. Section 4 closes the discussion with conclusions and outlook.

2. The TauMinator algorithm

The 𝜂 coverage of the CMS calorimeters at the L1T is organised in Trigger Towers (TTs),
offering a coarse view of the calorimeters. Each TT is identified by its position in discrete Cartesian
coordinates (𝑖𝜂, 𝑖𝜙) and carries energy deposit (𝐸T). In the endcap, the High Granularity Calorime-
ter (HGCAL) [5] produces a second type of input to the L1T, the CL3D, which are 3-dimensional
clusters following the particle shower evolution characterized by shower shape variables.

The calorimetric inputs are exploited in the TauMinator algorithm, which is designed based
on five guidelines: boost the Run-2 and Run-3 approach to τh shape recognition; avoid the need for
an independent isolation step between τh and QCD-induced jets; calibrate the τh candidate profiting
of energy deposits correlations; exploit the highly granular information of the CL3Ds; maximally
profit of the L1T FPGAs computing resources.

The use of Convolutional Neural Networks (CNNs) abides by all five principles. This class of
NNs is specifically designed to process pixel data and is generally used in image recognition. The
TT map can be interpreted as a pixelated view of the CMS calorimeters, making CNNs a natural
approach. Any τh candidate can be reconstructed as a fixed-size image of TTs, where each TT acts
as a pixel, and a CNN can be trained to recognize patterns associated with a τh. This approach
can perform both the rejection of background and the calibration of the τh candidate by exploiting
the pattern recognition capabilities of a CNN embedded in FPGA firmware. Additionally, in the
endcap region only, the CL3D information can be seamlessly included in the process.

2.1 Algorithm design

The creation of L1T τh candidates, in both barrel and endcap, is initiated by local energy maxima
in exclusive regions extending five TTs in the 𝜂 direction and nine TTs along the 𝜙 direction, so
no overlap between the clusters can be formed. Seeding TTs satisfy 𝐸T ≥ 2.5 GeV; to ensure that
not only the seed but entire clusters are contained in the HGCAL acceptance, seeds must fulfil
|𝑖𝜂 | ≤ 33. All TTs within a distance |Δ𝑖𝜂 | ≤ 2 and |Δ𝑖𝜙| ≤ 4 from the seed are clustered in a single
τh candidate. Due to their characteristic dimensions, these clusters are referred to as CL5×9.
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In the HGCAL, CL3D-based L1T τh candidates are selected as single clusters fulfilling 𝐸T >

4 GeV. A preselection based on a BDT developed at the time of the Phase 2 L1T technical design
report and trained for PU rejection is also applied [2]. After CL3D candidates are selected, the
matching between CL5×9 and CL3D is performed to ensure that they reconstruct the same τh lepton.
For CL5×9 satisfying |𝑖𝜂seed | ≥ 19 the geometrical requirementΔ𝑅(CL5×9

,CL3D) < 0.5 is enforced.
The architecture of the TauMinator algorithm is reported in Figure 1; it is implemented in

Keras [6] with a TensorFlow [7] backend, and the specific parameters of each component can be
grasped in the Figure. Due to the different available TPs in the barrel and endcap areas, the algorithm
is split into two independent compartments, one for each region, with separation at |𝑖𝜂 | ≤ 18. In
the barrel section, the input is represented by the CL5×9. In the endcap section, the input is CL5×9

and CL3D. In both partitions of the algorithm, the CL5×9 is processed by a CNN that performs the
τh pattern recognition based on the TTs information; the additional information from the seeding
TT and the CL3D shower shapes is concatenated to the CNN output and used as input to two dense
NNs which perform the final identification and calibration of the τh candidate.
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Figure 1: Visual representation of the TauMinator algorithm architecture. The TauMinator comprises
two sections: barrel and endcap with separation |𝑖𝜂 | = 18. The CL5×9 identifies the input obtained from
the TTs of the calorimeters, with (𝜂, 𝜙)seed the seeding tower position, while CL3D is the specific input from
the HGCAL detector; the characteristics of both are detailed in the text. In each section of the algorithm, a
standard CNN architecture is employed with the hyperparameters specified in the figure [4].

2.2 Firmware implementation

The TauMinator design outlined above is heavily influenced by the necessity to implement
the CNNs into FPGA firmware; nevertheless, the architecture is built using a floating point precision
architecture that is not easily implementable in FPGA firmware. Therefore, additional optimization
steps need to be performed to achieve the final firmware-embedded model.

The first step is the compression of the TauMinator model to reduce the firmware resources
used by the CNN using two techniques. Quantization consists of training a CNN whose variables
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have been encoded into digital quantities of fixed precision. Pruning consists of simplifying the
CNN by reducing its complexity by removing certain weights. These two methods are exploited
simultaneously to achieve maximal efficiency of the compression.

The second step is the conversion of the software into a custom HLS (High-Level Synthesis)
firmware design with the hls4ml package [8]. Once the HLS conversion has been performed,
the FPGA resources estimate can be performed. The estimates of the main resources usage, the
Initiation Interval (II), and the Latency (Lat.) of each part of the TauMinator algorithm are
reported in Table 1 for the barrel section. All components require a very small percentage of
FPGA resources, generally remaining below 1%. It should be noted that the resources reported
are for a single instance of the algorithm; therefore, the TauMinator would be well suited for
a time-multiplexed trigger architecture. The firmware deployment of the algorithm in an FPGA
testbench showcases 100% hardware-emulator agreement.

When translating the TauMinator algorithm from software to firmware, it is imperative
to preserve its performance. This is achieved by fine-tuning all the parameters for the CNN
compression and firmware synthesization. The performance attained at each step of this process
is reported in Figure 2. Minimal loss in performance is achieved at each step, highlighting the
successful adaptation of the TauMinator algorithm to the hardware constraints of the L1T FPGAs.

LUT FF BRAM DSP II [ns] Lat. [ns]

Shared Convolutional NN 1.07% 0.48% 0.00% 0.00% 22.2 55.6
Identification Dense NN 0.40% 0.09% 0.02% 0.17% 2.78 30.6
Calibration Dense NN 1.68% 0.39% 0.00% 3.28% 2.78 38.9

Table 1: Summary of the main FPGA resources used by the barrel section of the TauMinator algorithm,
alongside the II and Lat. of each part of the algorithm. These results are obtained targeting a Xilinx Virtex
UltraScale+ VU13P FPGA at a clock frequency of 360 MHz. The same naming of Figure 1 is used for the
networks. Analogous results are obtained for the endcap section of the TauMinator algorithm [4].

3. Physics performance of the TauMinator algorithm

Figure 3 reports the physics performance of the TauMinator algorithm. On the left and
in the centre, the matching efficiency and the trigger turn-ons as a function of generated 𝑝T of
the TauMinator algorithm are compared to those of the CaloTau algorithm, respectively. The
matching efficiency is computed as the fraction of generated τh that are geometrically matched to
an L1T τh candidate; the trigger turn-on is defined as the fraction of matched L1T objects that pass
a specific 𝑝T threshold. While the TauMinator matching efficiency is mostly comparable to the
one of the CaloTau algorithm, showcasing a steep rise and a plateau approaching unity, the trigger
turn-ons show a consistently better performance of the TauMinator algorithm owing to its better
calibration. On the right, the single-τh rate is shown as a function of the offline threshold, which is
evaluated as the generator 𝑝T value at which the trigger turn-on crosses the 90% efficiency point.
The TauMinator algorithm guarantees the following improvements: a reduction of the inclusive
rate by 37% (from 31.4 kHz to 19.8 kHz) at a threshold of 150 GeV; or conversely, a reduction of
the threshold by 14 GeV at a fixed rate of 31.4 kHz.

4



P
o
S
(
E
P
S
-
H
E
P
2
0
2
3
)
5
9
0

Development and firmware implementation of the TauMinator algorithm Jona Motta

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Signal Efficiency

10−1

100

Ba
ck

gr
ou

nd
 E

ffi
ci

en
cy

14 TeV, 200 PUCMSPhase-2 Simulation Preliminary
Keras Floating Point ROC, AUC = 0.973
QKeras Quantised ROC, AUC = 0.972
HLS Firmware ROC, AUC = 0.971

Samples:
 - VBF H → ττ
 - ggF H → ττ
 - DY Z/γ * → ττ

Signal ≡  matched CL5 × 9 − τGen.
h  pair

Background ≡  unmatched CL5 × 9

0.0 0.5 1.0 1.5 2.0 2.5
pL1τ

T /pGenτ
T

0

1000

2000

3000

4000

5000

6000a.
u.

14 TeV, 200 PUCMSPhase-2 Simulation Preliminary
Keras Floating Point: μ = 1.08, σ =  0.26
QKeras Quantised: μ = 1.08, σ =  0.27
HLS Firmware: μ = 1.04, σ =  0.26

Figure 2: Receiver Operating Characteristic (ROC) curve (left) and energy response of the Level-1 τh with
respect to the generated 𝑝T (right) for the barrel section of the TauMinator algorithm. The results are shown
for the three steps of the design, i.e. Keras software (red), QKeras quantized and pruned software (blue), and
HLS firmware implementation (yellow), showcasing minimal loss of performance achieved in all the steps.
Analogous results are obtained for the endcap section of the TauMinator algorithm [4].
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Figure 3: Comparison of the matching efficiency (left), the trigger turn-ons (centre) as a function of generated
𝑝T, and the single-τh rate (right) as a function of the offline 𝑝T, defined as the generator 𝑝T value at which the
trigger turn-on crosses the 90% efficiency point, for the TauMinator algorithm and the CaloTau algorithm.
The efficiencies are evaluated in HH → bbττ events at 200 PU, and the functional form of the fits consists
of a cumulative Crystal Ball function [9] convolved with an arc-tangent in the high 𝑝T region. The rate is
evaluated in minimum-bias events at 200 PU [4].

4. Conclusions and outlook

The HL-LHC will pose big challenges for the CMS experiment, which will entirely replace its
L1T system. In this context, the reconstruction of τh candidates will be particularly challenging, and
the TauMinator algorithm offers an innovative and highly-performing solution to the problem by
employing FPGA-embedded CNNs. The TauMinator algorithm has been successfully deployed
in firmware, and it outperforms currently available standard triggering algorithms. Future develop-
ments of the TauMinator will feature the inclusion of track information, the exploration of graph
neural network architectures, and the enhancement to a multi-particle identifier.
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