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Impact of top mass on top differential distributions
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The next-to-leading order single-differential top quark-antiquark pair production cross section
predictions are examined consistently using short-distance top quark mass schemes, with the
evolution of the mass of the top quark performed in the MSR scheme 𝑚MSR

t (𝜇) for scales 𝜇 below
the MS top quark mass 𝑚t (𝑚t), and in the MS scheme 𝑚t (𝜇) for scales above. The implementation
of a mass renormalization scale independent of the strong coupling renormalization scale and
factorization scale in quantum chromodynamics allows investigating independent dynamical scale
variations, and a scale choice of 𝑅 ∼ 80 GeV is demonstrated to be important for the stability of
the cross-section predictions in the low top quark-antiquark pair invariant mass range. Moreover, a
choice of semi-dynamical renormalization and factorization scales is preferred, and the findings are
demonstrated in a theoretically consistent extraction of the top quark MSR mass from experimental
data.
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The top quark mass 𝑚t is one of the fundamental parameters of the Standard Model, and has
a significant impact on various predictions both directly and via higher-order corrections. Yet,
quark masses are formal parameters of the Lagrangian of quantum chromodynamics (QCD), and
dependent on a choice of renormalization scheme. While the frequently used pole mass 𝑚pole

t , based
on the picture of an on-shell observable particle, allows for consistent cross section field theory
computations, it suffers from an infrared sensitivity of the order of the scale of QCD known as the
renormalon ambiguity [1–3]. On the other hand, this issue does not concern the so-called short-
distance masses such as the MS mass 𝑚t(𝜇𝑚) and the MSR mass 𝑚MSR

t (𝑅) [4, 5], where the mass
renormalization scales 𝜇𝑚 and 𝑅, respectively, act as finite resolution scales. In their case, real and
virtual self-energy radiation are treated inclusively at scales below the mass renormalization scale.
The freedom to adopt suitable choices for 𝜇𝑚 and 𝑅 can potentially enhance the precision of top
mass sensitive observables, in particular for predictions at lower orders where it leads to a systematic
absorption of sizeable corrections into the quark mass parameter. However, the dependence on the
mass renormalization scales necessitates proper scale setting for the extraction of theoretically
well-defined masses from cross section measurements to avoid the appearance of large logarithms.
The present work is the first concurrent investigation of the invariant mass of the tt pair 𝑚tt, on the
MSR mass scale 𝑅 and the MS mass scale 𝜇𝑚, accounting for QCD corrections. Further details
and results of the investigations are provided in Ref. [6].

The relation of the pole and MS masses reads𝑚pole
t = 𝑚t(𝜇𝑚)

(
1 + ∑

𝑛=1 𝑑
MS
𝑛 (𝜇𝑚) (𝑎𝑆 (𝜇𝑚))𝑛

)
,

where 𝑑MS
𝑛 (𝜇𝑚) are perturbative coefficients and 𝑎𝑆 ≡ 𝛼𝑆/𝜋. The pole and MSR masses

are related via 𝑚
pole
t = 𝑚MSR

t (𝑅) + 𝑅
∑∞

𝑛=1 𝑑
MSR
𝑛 (𝑎𝑆 (𝑅))𝑛. Then lim

𝑅→0
𝑚MSR

t (𝑅) → 𝑚
pole
t , and

lim
𝑅→𝑚t (𝑚t )

𝑚MSR
t (𝑅) → 𝑚t(𝑚t) up to a small matching correction, with the latter obtained by in-

tegrating out top quark loop corrections at 𝑅 ≲ 𝑚t(𝑚t) [7]. While the 𝜇𝑚 evolution of 𝑚t(𝜇𝑚)
is logarithmic, the 𝑅-evolution of 𝑚MSR

t (𝑅) is linear, and designed to capture the correct physical
logarithms for observables with 𝑚t dependence generated at dynamical scales 𝑅 < 𝑚t, such as
resonances, thresholds and low-energy endpoints [8]. At dynamical scales of order and larger
than 𝑚t, the MS mass and evolution are used. Based on Refs. [9, 10], the top quark-antiquark (tt)
production cross section as a function of the tt system invariant mass 𝑚tt at next-to-leading order
(NLO) is given by

𝑑𝜎

𝑑𝑚tt
= 𝑎2

𝑆

𝑑𝜎 (0)

𝑑𝑚tt

(
𝑚, 𝜇𝑟 , 𝜇 𝑓

)
+ 𝑎3

𝑆

𝑑𝜎 (1)

𝑑𝑚tt

(
𝑚, 𝜇𝑟 , 𝜇 𝑓

)
+ 𝑎3

𝑆 𝑅̃𝑑1
𝑑

𝑑𝑚t

(
𝑑𝜎 (0) (𝑚t, 𝜇𝑟 , 𝜇 𝑓 )

𝑑𝑚tt

) ����
𝑚t=𝑚

, (1)

with 𝜎 (0) the leading order (LO) and 𝜎 (1) the NLO cross section in the pole mass scheme, and the
short-distance schemes are implemented at NLO via the derivative term. Note that the renormal-
ization (factorization) scale 𝜇𝑟 (𝜇 𝑓 ) is independent of 𝑅 or 𝜇𝑚 and 𝑎𝑆 = 𝑎𝑆 (𝜇𝑟 ). Furthermore,

(𝑚, 𝑑1, 𝑅̃) =
{
(𝑚MSR

t (𝑅), 𝑑MSR
1 , 𝑅), in the MSR regime (𝑅 < 𝑚t(𝑚t)),

(𝑚t(𝜇𝑚), 𝑑MS
1 (𝜇𝑚), 𝑚t(𝜇𝑚)), in the MS regime (𝑅 > 𝑚t(𝑚t)).

(2)

In the context of the present work, Eq. (1) is implemented into MCFM v6.8 [11, 12].
The implementation of the mass renormalization scales independently from 𝜇𝑟 and 𝜇 𝑓 allows

the first investigation of the dependence of the 𝑚tt distribution on the scale 𝑅. Fig. 1 shows the
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𝑑𝜎/𝑑𝑚tt cross section in the range 𝑚tt ∈ [300, 333] GeV at leading-order (LO) and NLO, as well as
the ratio of the NLO to the LO cross section in the range𝑚tt ∈ [333, 366] GeV. Note that these ranges
contain high sensitivity to 𝑚t. The cross section for the range 𝑚tt ∈ [300, 333] GeV, i.e. the region
below the tt production threshold, is zero for 𝑅 < 60 GeV, corresponding to 2𝑚MSR

t (𝑅) > 333 GeV.
Non-zero contributions appear in the 𝑚tt ∈ [300, 333] GeV range only at large 𝑅 or when using
the MS mass, corresponding to smaller values of 𝑚MSR

t (𝑅) or 𝑚t(𝜇𝑚). The LO contribution is
zero or positive throughout the probed range of 𝑅 and 𝜇𝑚, but the quick decrease of the derivative
terms in Eq. (1) in contrast to the slow increase of the positive contributions leads to unphysical
negative values of the NLO cross section in this kinematic range. This was also pointed out in
the investigations of the MS scheme performed in Ref. [13]. Since tt production in the range
𝑚tt ∈ [300, 333] GeV is impossible, the results in Fig. 1 also indicate that values of 𝑅 above 80 GeV
should be avoided. Therefore, the MS mass should not be used if the tt cross section in this 𝑚tt
range is included in the experimental analysis. The conclusion holds even in the presence of quasi-
bound state effects, since these provide a more precise prediction of the tt production threshold
located at 𝑚tt values above 333 GeV. A further feature of the 𝑚tt ∈ [300, 333] GeV range is the
rapid increase of the cross section at 𝜇𝑚 ≳ 410 GeV. This occurs when 𝑚t(𝜇𝑚) becomes so small,
that LO tt production is possible even below 300 GeV. Furthermore, the ratio of the predictions
at NLO to those at LO decreases substantially with increasing 𝑅, implying that the impact of the
NLO corrections is small at these 𝑅. Particularly, with 𝑅 ∈ [60, 80] GeV, the cross section changes
only little as a function of 𝑅. On the other hand, the impact of the higher-order QCD corrections,
including the quasi-bound state corrections, would be sizeable at very small 𝑅. They are essentially
maximized in the pole scheme which is closely mimicked by the result at 𝑅 = 1 GeV. Additionally¸
the differences between the curves corresponding to smaller or larger central 𝜇𝑟 and 𝜇 𝑓 values
remain small. This motivates setting the central values of 𝑅, 𝜇𝑟 and 𝜇 𝑓 to around 80 GeV near
the peak of the 𝑚tt distribution to obtain predictions that are robust against scale variations in the
following extraction of the top quark MSR mass.

An extraction of 𝑚MSR
t (𝑅) is performed from the single-differential tt production cross section

measured by the CMS Collaboration in pp collisions at
√
𝑠 = 13 TeV [14], corresponding to an

integrated luminosity of 35.9 fb−1. The cross section is provided in the ranges 𝑚tt < 420 GeV,
𝑚tt ∈ [420, 550] GeV, 𝑚tt ∈ [550, 810] GeV and 𝑚tt > 810 GeV. The top quark MSR mass is
extracted by fitting the predicted tt production cross section, computed with the ABMP16 5 flavor
PDF [15] at NLO and assuming 𝑅 = 80 GeV, to the experimental data. Since 𝑚t values extracted
at different scales are unambiguously related by renormalization group equations and matching
relations, the resulting 𝑚MSR

t (80 GeV) is evolved to the reference scale of 𝑅 = 1 GeV, as well as
translated to 𝑚t(𝑚t). The fit uncertainty is obtained via the Δ𝜒2 = 1 tolerance criterion. The
uncertainty in the initial choice of 𝑅 is estimated by repeating the fits assuming 𝑅 = 60 GeV and
100 GeV, and taking the difference of the masses evolved to the reference scales to the respective
results of the 𝑅 = 80 GeV fit. The 𝜇𝑟 , 𝜇 𝑓 uncertainty is obtained by independently varying the
scales by factors of 2±1, avoiding cases where one scale is multiplied by 2 and the other by 1/2, and
constructing an envelope.

With 𝜇𝑟 = 𝜇 𝑓 = 𝑚MSR
t (80 GeV) throughout the 𝑚tt distribution, evolving the obtained

𝑚MSR
t (80 GeV) to 𝑅 = 1 GeV yields 𝑚MSR

t (1 GeV) = 173.2 ± 0.6 (fit)+0.4
−0.6 (𝜇𝑟 , 𝜇 𝑓 )+0.4

−0.5 (𝑅) GeV.
This translates into 𝑚t(𝑚t) = 163.3+0.8

−1.0 GeV, which is compatible with the 𝑚t(𝑚t) = 162.1+1.0
−1.0 GeV
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1Figure 1: Left: The 𝑚tt ∈ [300, 333] GeV range of the 𝑚tt distribution. There is no tt production at
𝑅 ≲ 60 GeV, but the region above it suffers from the lack of Coulomb corrections. The discontinuity at
𝜇𝑚 ≳ 410 GeV is due to the tt production threshold becoming artificially low, and such high values of the
scale 𝜇𝑚 should be avoided. Right: The ratio of the NLO and LO cross sections in the 𝑚tt ∈ [333, 366] GeV
range. The transition from a region suffering from the missing Coulomb corrections to a more stable region
where the threshold effects become less important is seen at 𝑅 ≳ 60 GeV (blue). Additionally, small values
of 𝜇𝑟 , 𝜇 𝑓 are observed to stabilize the prediction quickly as a function of 𝑅 or 𝜇𝑚.

obtained at NLO in the ABMP16 5-flavor PDF set [15]. However, it disagrees with Ref. [16],
where 𝑚

pole
t = 170.5 ± 0.8 GeV was obtained, translating into 𝑚MSR

t (1 GeV) = 170.2 ± 0.8 GeV
and interpreting the pole mass [16] as the asymptotic pole mass [8]. To investigate the differ-
ence, an alternative fit is performed with 𝑅 set directly to 1 GeV, instead of setting the initial
value to 𝑅 = 80 GeV and evolving the extracted 𝑚MSR

t (80 GeV) to 𝑅 = 1 GeV. This results in
𝑚MSR

t (1 GeV) = 170.1 ± 0.6 (fit)+1.1
−0.9 (𝜇𝑟 , 𝜇 𝑓 ) GeV, which is compatible with Ref. [16]. Since

𝑚MSR
t (1 GeV) approximates the pole scheme, this observation confirms the conclusion that the use

of the pole scheme, or the MSR scheme with very small initial values of 𝑅, leads to less reliable
results in a fixed-order QCD at NLO, where the resummation of quasi-bound state effects is missing.

Finally, to investigate the effect of using small 𝜇𝑟 and 𝜇 𝑓 near the peak of the 𝑚tt distribution,
a fit is performed with the central choices of 𝜇𝑟 = 𝜇 𝑓 = 𝑚MSR

t (80 GeV)/2 for 𝑚tt < 420 GeV
and 𝜇𝑟 = 𝜇 𝑓 = 𝑚MSR

t (80 GeV) for 𝑚tt > 420 GeV. This results in 𝑚MSR
t (1 GeV) = 174.8 ±

0.5 (fit)+0.2
−0.4 (𝜇𝑟 , 𝜇 𝑓 )+0.2

−0.3 (𝑅) GeV. As expected from the present investigations, the setting increases
robustness against scale variations. While a comprehensive understanding of 𝑚t extracted from
cross section measurements will require the quasi-boundstate corrections and the resummation of
soft gluon effects to be thoroughly investigated and accounted for, following e.g. Ref. [17], the
present results indicate that proper scheme and scale choices are of key importance, affecting both
the size of the higher-order corrections as well as the resulting value of the extracted top quark mass.
Nonetheless, the observations presented here are expected to remain valid even after the inclusion
of the aforementioned effects.
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