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𝑊- and 𝑍- boson production are among of the most precisely analyzed processes at the LHC,
enabling applications that range from precision determinations of couplings to parton distribution
functions to particle masses. Direct measurements are meanwhile only limited by luminosity
uncertainties of about 1%. On the other hand, the required theory predictions are pushing the
boundaries of theoretical methods, with a level of sophistication reached that is setting the stage for
the HL-LHC’s demand for higher multiplicity processes at a similar level. In these proceedings we
briefly summarize recent progress in the theoretical modeling of 𝑊- and 𝑍-bosons.

The Eleventh Annual Conference on Large Hadron Collider Physics (LHCP2023)
22-26 May 2023
Belgrade, Serbia

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:tneumann@wm.edu
https://pos.sissa.it/


P
o
S
(
L
H
C
P
2
0
2
3
)
1
4
7

Vector boson modeling for precision physics Tobias Neumann

Experimental measurements. 𝑊 and 𝑍 boson production are among the most important processes
in LHC physics and constitute standard candles with a wide range of applications. Measurements at
the level of 1% or better for both 𝑍 production [1–5] and 𝑊 production by ATLAS, CMS and LHCb
[5–9] [10–14] [15–19] demand the development of theoretical predictions to an unprecedented level.
In the future this will be needed at a much broader scope for other processes to ensure a successful
HL-LHC program. Only recently has the precision reached been limited by the measurement of the
LHC luminosity to about 1%, improving upon earlier levels of 2-3% [20, 21]. Apart from direct
kinematic measurements, the possibilities through this precision are manyfold, demonstrated for
example by precision 𝑊-mass measurements [22–25], charge asymmetries [14, 26–29], parton
distribution functions (PDFs) [9, 30–33], as well as the strong coupling 𝛼𝑠 [34–36].

Theory predictions. However, these highly complex collider analyses have a strong dependence on
the theoretical predictions for background suppression and subtraction as well as the signal process.
Without equally precise predictions the statistically precise measurements cannot be fully interpreted.
We are currently in a situation where theory predictions are behind, limiting this ability, with many
individual uncertainties contributing at the percent level. This requires increasing the precision
of individual components like fixed-order expansions in QCD, QED and electroweak couplings,
higher-order resummation, parton showers, non-perturbative effects in PDFs and TMDs, possibly
including higher power terms in (collinear) factorization, understanding phenomenological modeling
and tuning, and even decreasing numerical precision and computational resource requirements.
With uncertainties contributing at the per mill to percent level in all of these components, only the
combination allows for comprehensive predictions aiming to match experimental precision.

First N3LO QCD (𝛼3
𝑠) predictions for 𝑊 and 𝑍 boson production were calculated at a fully inclusive

level for total cross-sections [37, 38] and rapidity distributions [39]. These calculations revealed
unexpectedly large corrections of about −2.5% due to cancellations between partonic initial-state
channels, but did not take into account effects from N3LO PDFs. The current state-of-the-art in
N3LO QCD is at a fiducial and fully differential level [40–46], typically including the effect of
transverse-momentum (𝑞𝑇 ) resummation at a similar level in 𝛼𝑠. Generally the residual QCD
truncation uncertainties at the level of 𝛼3

𝑠 are estimated to be at the level of 1 − 2% inclusively, and
at small transverse momenta 𝑞𝑇 ≲ 𝑚𝑉 due to the higher-order 𝑞𝑇 resummation. Note that both
fixed-order and resummed calculations require N3LO PDFs for a consistent 𝛼3

𝑠 precision. The formal
logarithmic accuracy of N4LL (𝛼3

𝑠) in particular relies on the four-loop DGLAP evolution.

Higher-order transverse-momentum resummation up the level of N3LL’ matched to 𝛼2
𝑠 fixed order

predictions has also been studied in refs. [47–49]. Recent studies of threshold resummation in
rapidity distributions were presented in refs. [50–53]. Transverse-momentum resummation is also
considered with a focus on TMD fits in the literature, see e.g. refs. [54–57]. Attention will have to
be paid in disentangling perturbative and non-perturbative contributions [58].

Currently, all of these fully differential calculations at 𝛼3
𝑠 rely on the idea of 𝑞𝑇 slicing subtractions

[59]. They are made possible through calculations of the corresponding three-loop beam-functions
[60–62], complete three-loop hard function [63–67] and the existence of a NNLO calculation of
𝑉+jet production [68–72].
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Figure 1: 𝑊+ cross-sections at various perturbative orders in 𝛼𝑠, with and without 𝑞𝑇 resummation, in
comparison with the 5.02 TeV ATLAS measurement [5]. Error bars show uncertainties from scale variation
and from the MSHT20 PDF sets [86, 87] corresponding to the perturbative order. The 𝛼3

𝑠 results have an
additional numerical and slicing cutoff uncertainty of 0.5% that was added linearly to the scale uncertainties
for display. This figure is taken from ref. [41]

Recently there has been a shift from relying on fixed-order calculations for total fiducial cross-sections
to resummed calculations. This is because convergence issues in the perturbative series due to
fiducial cuts have been identified [73–75] that are resolved in resummation-improved perturbation
theory without requiring modification of analysis cuts [74]. The difference between symmetric and
product lepton cuts has been studied in ref. [43].

Apart from QCD effects, other Standard Model effects play a role at the level of 1% precision.
Among these, mixed QCD⊗EW corrections were reported in refs. [76–78] for 𝑍 production and
in refs. [79–83] for 𝑊 production, and with an application to 𝑊-mass determinations in ref. [84].
QED-QCD transverse-momentum resummation has been considered in ref. [85]. Of particular
importance are effects from PDFs, which currently dominate the uncertainty budget, see figs. 1, 2.
They will require careful examination to resolve systematic issues and an extension towards N3LO
[86].

With 𝑊 and 𝑍-boson predictions entering crucially in 𝑊-mass analyses, there is a strong interest
in how uncertainties propagate in 𝑊-mass analyses. A comprehensive review of how theoretical
contributions and uncertainties impact the 𝑊-boson mass measurement was presented in ref. [88]
(2016), while the impact of PDF [89] and higher-order [90] uncertainties have also been separately
assessed more recently. An estimate for the impact of mixed QCD⊗EW corrections has since also
been performed [84].

Due to the significance of this process and the complication of higher-order corrections, as well as
the flexibility in approaches beyond fixed-order, it is important to compare different approaches,
cross-check results, and allow for public and sustainable predictions [91, 92]. These aspects,
especially public reproducibility, are increasingly important with very precise collider measurements
that might indicate Standard Model tensions, see e.g. ref. [25].

Public codes for the calculation of 𝑊 and 𝑍 production include RadISH+MATRIX at NNLO QCD

3



P
o
S
(
L
H
C
P
2
0
2
3
)
1
4
7

Vector boson modeling for precision physics Tobias Neumann

W+ 5.02 TeV

10 30 100 300

0.95

1.00

1.05

1.10

0.95

1.00

1.05

1.10

pt
W [GeV]

ra
tio

 to
 M

S
H

T
20

nn
lo

_a
s1

18

CT18NNLO MSHT20an3lo_as118

MSHT20nnlo_as118 NNPDF40_nnlo_as_01180

Figure 2: Relative PDF uncertainties of the 𝑊+ transverse momentum distribution. Note that MSHT20an3lo
includes uncertainties from missing higher orders, which are not included in the other sets. This figure is
taken from ref. [41]

.

including 𝑞𝑇 resummtion and NLO EW [93–95], DYTurbo matching 𝑞𝑇 -resummed predictions
to NNLO QCD [45, 96, 97], CuTe-MCFM at N3LO QCD including 𝑞𝑇 resummation and NLO EW
[40, 41, 98, 99], MiNNLO+PS+POWHEG NNLO QCD matched to parton shower [100], artemide
[101] and Nanga Parbat [56] with resummed-only predictions focusing on transverse-momentum
parton distribution functions, FEWZ [102, 103] at NNLO QCD using local subtractions, and Horace
[104, 105] including NLO EW corrections with matching to QED parton shower. While fixed order
NNLOjet predictions [69, 71] have been matched to RadISH resummation [106, 107] at the level of
𝛼3
𝑠 , e.g. ref. [44], the code is not publicly available. Note that codes like DYTurbo can use NNLO

𝑉+jet results from MCFM [40, 41, 68, 70, 72] to also achieve full N3LO accuracy.

Challenges and outlook. The experimental precision in 𝑊 and 𝑍-boson production demonstrates
the LHC’s capabilities for precision measurements, the success of modern data-analysis techniques,
and showcases a level of precision that will be reached for a wider range of processes at the HL-LHC.
Matching the precision in theoretical predictions is a future challenge, requiring not just higher
perturbative orders in individual components and more precise non-perturbative inputs like PDFs,
but the combination of a multitude of effects that contribute at the percent level. Overcoming
these challenges will require an unprecedented community effort in novel developments and open
collaboration. Ultimately this will ensure that we maximize the return on investment of the LHC in
our goal of describing the fundamental laws on nature.

Acknowledgments. This work was supported by the United States Department of Energy under
the grant contracts DE-SC0012704 and DE-SC0023047.
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