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Flavour anomalies in 𝑏→ 𝑠ℓ+ℓ− and 𝑏→ 𝑐ℓ𝜈ℓ transitions Florian Reiss

1. Flavour anomalies

In recent years, tensions with the Standard Model (SM) have been observed in the flavour sector.
If confirmed, these so-called flavour anomalies would be a clear indication of physics beyond the SM.
The processes where these tensions have been seen are 𝑏→ 𝑐ℓ𝜈ℓ and 𝑏→ 𝑠ℓ+ℓ− transitions. The
former are flavour-changing charged currents mediated through a 𝑊-boson at tree-level, while the
latter can only occur at loop-level in the SM. The ATLAS [1], CMS [2] and LHCb [3] experiments
at the Large Hadron Collider (LHC) provide ideal testing grounds for studying 𝑏-hadron decays,
given the large amount of different 𝑏-hadrons produced in proton-proton collisions. In particular,
the LHCb experiment is designed to make precision measurements in the flavour sector, while the
ATLAS and CMS experiments are well suited to directly search for new particles, which could
contribute to these processes and modify the SM expectation through virtual diagrams.

In the SM, the leptons couple with gauge bosons independently of their generation and the
only differences arise from their different masses. Testing this lepton flavour universality (LFU)
provides powerful tests of the SM. By measuring the ratios of branching fractions

R(𝐻𝑠) =
B(𝐻𝑏 → 𝐻𝑠𝜇

+𝜇−)
B(𝐻𝑏 → 𝐻𝑠𝑒

+𝑒−) (1)

and
R(𝐻𝑐) =

B(𝐻𝑏→ 𝐻𝑐𝜏𝜈𝜏)
B(𝐻𝑏→ 𝐻𝑐ℓ𝜈ℓ)

, (2)

where 𝐻𝑏, 𝐻𝑠 and 𝐻𝑐 indicates hadrons containing a 𝑏, 𝑠 or 𝑐 quark, respectively, LFU can be
tested. Using ratios as observable improves the precision of the SM predictions and leads to the
cancellation of some experimental uncertainties.

2. Flavour-changing neutral currents

Several observables involving 𝑏→ 𝑠ℓ+ℓ− transitions have shown tensions with the SM. These
include differential branching fractions (BFs), measurements of angular quantities and tests of LFU.
The SM predictions of these observables are made more difficult from the uncertainty on the form
factors describing the hadronic process, as well as the contribution from charm loops. Angular
observables can be designed to reduce the impact of form factors [4] and the associated uncertainty
cancel in LFU tests, improving the precision of the theory predictions.

The differential BFs of various 𝑏→ 𝑠ℓ+ℓ− decays have been measured by the LHCb experiment,
where the BF is determined in bins of the square of the muon-muon four-momentum 𝑞2 and tensions
with the SM predictions are seen in several bins for several decay modes [5][6][7]. One of the most
recent measurements by the LHCb experiment is of the differential BF of the 𝛬0

𝑏
→ 𝛬(1520)𝜇+𝜇−

decay, shown in Fig. 1. In this case, there are large discrepancies between different theory predictions
over most of the 𝑞2 range, which highlights the need for improved theory calculations for this decay.

Angular observables such as the forward-backward asymmetry 𝐴𝐹𝐵 or 𝑃′
5, which are designed

to reduce uncertainty on the SM prediction from the hadronic form factors, have been measured
by the LHCb, CMS and ATLAS experiments. In the measurement of 𝑃′

5 tensions with the SM
prediction are observed in several 𝑞2 regions. As examples, Fig. 2 shows the measurement of
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Figure 1: Differential branching fraction of the 𝛬0
𝑏
→ 𝛬(1520)𝜇+𝜇− decay in intervals of 𝑞2 [8]. The

error bars in black, gray, and green represent the measured results with statistical, systematic, and B(𝛬0
𝑏
)→

𝑝𝐾−𝐽/𝜓 uncertainties taken into account. Also shown are various SM predictions [9][10][11][12].
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Figure 2: Measurements of 𝑃′
5 in bins of 𝑞2 by ATLAS [13], CMS [14] and LHCb [15] using the 𝐵0 →

𝐾∗0𝜇+𝜇− decay, as compiled in [16].

𝑃′
5 using the 𝐵0 → 𝐾∗0𝜇+𝜇− decay by the LHCb, ATLAS and CMS experiments and Fig. 3 the

measurement of 𝐹𝐿 using the 𝐵0
𝑠→ 𝜙𝜇+𝜇− decay by the LHCb experiment.

Tests of lepton flavour universality are performed by the LHCb experiment by measuring the
double-ratio

𝑅𝑋 =
B(𝐵 → 𝑋𝜇+𝜇−)
B(𝐵 → 𝑋𝑒+𝑒−) × B(𝐵 → 𝑋𝐽/𝜓 (→ 𝑒+𝑒−))

B(𝐵 → 𝑋𝐽/𝜓 (→ 𝜇+𝜇−))︸                             ︷︷                             ︸
𝑟 (𝐽/𝜓 )−1

, 𝑋 = 𝐾+, 𝐾∗0, ... (3)

which results in the cancellation of some systematic uncertainties and makes use of the fact that the
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Figure 3: Results for the CP-averaged angular observable 𝐹𝐿 in bins of 𝑞2 measured using the 𝐵0
𝑠→ 𝜙𝜇+𝜇−

decay by LHCb [17].

ratio 𝑟 (𝐽/𝜓 ) is known to be one with good precision [18]. The latest measurement of the ratios 𝑅(𝐾)
and 𝑅(𝐾∗) by LHCb is performed in two regions of 𝑞2 [19][20]. The signal yields are extracted by
fitting the 𝑚(𝐾+ℓ+ℓ−) and 𝑚(𝐾+𝜋−ℓ+ℓ−) invariant mass distributions. The signal shapes for the
electron modes have long tails due the lost energy from Bremsstrahlung emission and they contain a
significant contribution from mis-identified and partially reconstructed background. The measured
values for 𝑅(𝐾) and 𝑅(𝐾∗) in both 𝑞2 bins are summarised in Fig. 4 and are in agreement with the
SM prediction. This analysis employs a tighter electron identification requirement and an improved
modelling of the mis-identified hadronic background contributions to the 𝑒+𝑒− final state compared
to previous publications [21].

Additionally, the LHCb experiment has measured the ratios R(𝐾0
S) and R(𝐾∗+) [22] and

R(𝑝𝐾−) [23], which were found to agree with the SM prediction.

3. Flavour-changing charged currents

Measurements of the relative branching fractions of flavour-changing charged currents have
shown tensions with the SM predictions, as shown in Fig. 5, where LFU is tested by measuring the
relative branching fraction

R(𝐷 (∗) ) = B(𝐵→ 𝐷 (∗)𝜏+𝜈𝜏)
B(𝐵→ 𝐷 (∗)ℓ𝜈ℓ)

. (4)

At LHCb, both the muonic 𝜏+→ 𝜇+𝜈𝜇𝜈𝜏 and hadronic 𝜏+→ 𝜋+𝜋+𝜋− (𝜋0)𝜈𝜏 tauon decays are
used and final states including muons are used for the denominator (ℓ = 𝜇). As the neutrinos in the
final state are not reconstructed, the kinematics of the 𝑏-hadron are approximately measured and
the signal yields have to be extracted using multi-dimensional templates describing the signal and
background contributions. The analysis techniques differ depending on the tauon decay used. In
particular, measurements using the hadronic tauon decay rely on external input of relative branching
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Figure 4: Measured values of 𝑅(𝐾) and 𝑅(𝐾∗) by LHCb [19].

fractions to extract the final result. The relative BFsR(𝐷0) andR(𝐷∗) are measured simultaneously
using the muonic decay mode of the tau lepton by LHCb [24] to be

R(𝐷∗) = 0.281 ± 0.018 (stat) ± 0.024 (syst),

R(𝐷0) = 0.441 ± 0.060 (stat) ± 0.066 (syst),

𝜌 = −0.43,

where the first uncertainty is statistical and the second is systematic and 𝜌 is the correlation between
the two measurements. In combination, the measured values for R(𝐷0) and R(𝐷∗) are 1.9𝜎 away
from the SM prediction.

The relative BF R(𝐷∗−) is also measured by LHCb using the hadronic decay mode [25] to be

R(𝐷∗−) = 0.247 ± 0.015 (stat) ± 0.015 (syst) ± 0.012 (ext),

where the first uncertainty is statistical, the second is systematic and the third is due to the uncertainty
of the external BF measurements used. This measurement is combined with the previous LHCb
measurement [26][27], resulting in

R(𝐷∗−)𝑐𝑜𝑚𝑏 = 0.257 ± 0.012 (stat) ± 0.014 (syst) ± 0.012 (ext).

In combination with measurements by the Belle and BaBar experiments, the experimental average
is found to be in tension with the SM prediction by around 3.3𝜎 [28]. In addition, the LHCb
experiment has measured the ratios R(𝛬+

𝑐) [29] and R(𝐽/𝜓 ) [30], which were found in agreement
with the SM predictions.
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Figure 5: Summary of experimental measurements and SM predictions of the relative branching fractions
R(𝐷 (∗) ) compiled by HFLAV [28].

Figure 6: The observed (solid line) and expected (dashed line) 95% CL upper limits on the branching
ratio into charged leptons as a function of 𝑚𝐿𝑄 for the scalar LQ case (left) and the vector LQ case in the
minimal-coupling scenario (right) determined by ATLAS [34].

4. Interpretation & Outlook

To explain the flavour anomalies, various new physics models have been proposed, typically
introducing new particles contributing to these processes. Several such models, e.g [31][32][33],
have proposed the existence of leptoquarks (LQs), which directly couple quarks and leptons. In
some models, their masses could be of the order of O( TeV), and thus they could be produced at
the LHC. Based on the assumptions made for the leptoquark, such as spin structure and coupling
strength, the direct searches performed by the ATLAS and CMS experiments, such as [34] and [35],
can be translated into exclusion limits, as shown in Figs. 6 and 7. It can be seen that, depending on
the interpretation, direct searches are starting to exclude parts of the parameter space for leptoquark
masses and coupling strengths preferred by the flavour anomalies.

To further investigate the flavour anomalies and confirm the tensions seen with the SM,
additional measurements and larger data samples are required. The current and upcoming runs of
the LHC will enable the LHCb, ATLAS and CMS experiments to further probe these tensions by
measuring the observables in tension more precisely and by directly searching for new particles.
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Figure 7: Expected and observed upper limits of the LQ coupling 𝑔𝑈 as a function of the mass in the LH
(left) and LH+RH (right) scenarios determined by CMS [35]. The blue band shows the 68 and 95% regions
of 𝑔𝑈 preferred by the fit to the 𝑏 anomalies data [36].

Figure 8: Projections for the expected precision on the measurement of selected R(𝐻𝑐) ratios at LHCb
as a function of the year in which the corresponding data sample becomes available (left) [37]. Projected
uncertainty for various R(𝐻𝑠) ratios from the Belle II and LHCb experiments (right) [38].

The expected sensitivities of LFU tests with different final states at LHCb are shown in Fig. 8. It is
expected that LFU can be measured with percent-level precision for many final states.

5. Summary

Several tensions with the SM have been observed in the angular distributions and absolute and
relative branching fractions of 𝑏→ 𝑐ℓ𝜈ℓ and 𝑏→ 𝑠ℓ+ℓ− transitions. If confirmed, these flavour
anomalies would be a clear sign of contributions from physics beyond the SM. To complete the
picture, additional measurements with larger datasets and in some cases advancements on the theory
predictions are required.
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