Progress on nucleon transition matrix elements with a lattice QCD variational analysis
L. Barca*,
G. Bali and
S. Collins*: corresponding author
Pre-published on:
June 03, 2024
Published on:
December 13, 2024
Abstract
Nucleon weak matrix elements can be extracted from nucleon correlation functions with lattice QCD simulations. The signal-to-noise ratio prohibits the analysis at large source-sink separations and as a consequence, excited state contamination affects the extraction of the nucleon matrix elements. Chiral perturbation theory (ChPT) suggests that the dominant contamination in some of these channels is due to $N\pi$ states where the pion carries the same momentum of the current. In this talk, we report updates on the variational analysis with $qqq$-operators (nucleon-like) and $(qqq)(\bar{q}q)$-operators (nucleon-pion-like) where we report for the first time some preliminary results of $\langle N\pi| \mathcal{J}| N \rangle $, modulo some kinematic and volume factors, and we compare the results against ChPT. This pilot study is performed on a CLS ensemble with $N_f=3$, $m_\pi \approx 420~\mathrm{MeV}$, $a\approx 0.1~\mathrm{fm}$ and $T=2L\approx 4.8~\mathrm{fm}$.
DOI: https://doi.org/10.22323/1.451.0002
How to cite
Metadata are provided both in
article format (very
similar to INSPIRE)
as this helps creating very compact bibliographies which
can be beneficial to authors and readers, and in
proceeding format which
is more detailed and complete.