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1. Introduction

With the entrance of Frontier at Oakridge in the United States of America in Fall 2022 within
the Top500 ranking [1], High Performance Computing (HPC) officially entered the Exascale era.
With Aurora a second machine recently broke the barrier and soon other machines will follow, like
Jupiter at the Jülich Supercomputing Center. This milestone in HPC will enable computations in
lattice Quantum Chromodynamics (QCD) at unprecedented high precision and will allow for new
scientific discoveries at the foundation of physics. Algorithms, which are suited to perform on
the novel HPC architectures, will play here a pivotal role. Within this proceedings, we will take
a brief look into a handful of algorithms, which are promising to play a part in this endeavour to
shed some light on the unknowns of fundamental physics. Based on recent reviews on algorithms
for dynamical fermions and machine learning approaches [11–14], we will give an overview on
promising trends in algorithms for lattice QCD.

1.1 Search for new physics

Lattice QCD is a versatile tool in the understanding of the low energy regime of the standard
model. This was discussed in several contribution at the workshop [2]. Here, we will use the
measurement campaigns for anomalous magnetic moment of the muon as an example to point out
the next steps required to reach higher precision. With the new results from the Muon experiment
at Fermilab, which improved the error by a factor 2 in August 2023, the mismatch between the
data-driven approach [15–18, 20] and the experimental value [21–23], increased to more than 5
standard deviations. To resolve this puzzle, lattice QCD calculations need to decrease the error
by at least a factor two. The major contribution comes from the calculation of the leading order
(LO) term of the HVP contribution 𝑎𝐻𝑉𝑃−𝐿𝑂

𝜇 , which reaches an accuracy of 0.8% in case of the
result by BMW [24]. Here, the error splits roughly up into 75% associated to the isosymmetric
contribution, which is dominated by uncertainties of the continuum extrapolation and large time
distance contributions, 20% associated to finite size effects (FSE) and the remaining part associated
to the contribution of isospin breaking effects. To reduce these effects larger and finer lattices (see
section 3 and 4) as well as methods for higher precision measurements (see section 5), are needed.

A lot of other EuroPLEX contributions outlined similar needs, as discussed for neutrino-
nucleon scattering [4], in thecorrections of isospin breaking effects [6] or in application beyond the
electroquenched approximation [7].

2. Machines

With the end of Moore’s law complexity in computing architectures is increasing, i.e. now-a-
days most of the top HPC systems are equipped with GPU accelerator cards. With Intel, which is
equipping the systems Aurora and SuperMUC-NG2, a third vendor after Nvidia and AMD enters
the market of cutting-edge GPU devices. Additionally the gap between available FLOPs and
bandwidth on- and inter-node is further increasing over the last decade , see Fig. 3 of [14] . While
the computational power of a single node is increasing, the strong scaling window of algorithms is
shrinking, see Fig. 1, where the coarse grid operators is the bottleneck.
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The increase of the complexity of the hardware, e.g. introducing different concepts to address
memory and computing layouts, make the optimization of software and algorithms challenging. An
example is the newest high-end solution by NVIDIA, Grace-Hopper, a combination of a powerful
ARM CPU with several memory lanes connected to an even more powerful CUDA GPU chip. It
has to be seen how computational kernels can be designed to utilize such hybrid CPU+GPU in an
optimal manner.

Figure 1: Scaling of components used in
a 3 level multi-grid procedure on the A100
GPUs of Juwels-Booster.

Additional the high demand for computational power
of large language model has impact on the usage model
of supercomputing centers and likely on the design of
novel architecture. Namely, if machine learning work-
loads prefer low precision arithmetics, the importance of
high precision arithmetic, which is needed by scientific
workloads, might drop. This leads to challenges, which
need to be addressed by lattice QCD software solutions
and algorithms, e.g. mixed precision solvers are an option
to utilize the available hardware [25].

Due to that, ideally, algorithms for novel machines
consist of computational kernels with higher algorithmic
intensity, i.e. need less bandwidth for computing, and
techniques which can avoid communication and use low
precision arithmetics.

3. Algorithms for larger lattices

The state-of-the-art method for simulating large lattices is given by the Hybrid Monte Carlo
(HMC) algorithm. Towards large lattices the challenge is given by the sequential nature of the
molecular dynamics, which requires continuous updates based on the previous states. This can
be only speed up via strong scaling. If the strong scaling window does not scale as well as the
computational cost of the HMC, simulation time increases such that ensembles generation requires
several years.

The major computational part of the HMC simulation, is solving the Dirac equation 𝐷𝑥 = 𝑏,
with 𝐷 ∈ C12𝑉×12𝑉 a complex matrix which scales with the volume 𝑉 of the lattice, 𝑏 ∈ C12𝑉 the
right hand side and 𝑥 ∈ C12𝑉 the solution vector. Extending the strong scaling window can be done
now via communication avoiding algorithms for linear solvers. A basic approach is given by the
Schwarz-Alternating procedure [44]. Here, domain decomposition is used to divide the lattice into
domains and introducing a black-white order

det𝐷 = det(1 − 𝐷−1
𝑤 𝐷𝑤𝑏𝐷

−1
𝑏 𝐷𝑏𝑤)

∏
𝑗

det𝐷𝑏, 𝑗

∏
𝑘

det𝐷𝑤,𝑘 (1)

with the block operators 𝐷𝑏, 𝑗(𝐷𝑏,𝑘) define on the 𝑗 th (𝑘th) block. The idea is to apply the inverse of
white and black blocks in an alternating procedure. The procedure can be used to preconditioning the
iterate in a Krylov solver application via 𝑥𝑖 → (1−𝐾𝐷)𝑥𝑖+𝐾𝐷 with𝐾 = 𝐷−1

𝑤 +𝐷−1
𝑏
−𝐷−1

𝑏
𝐷𝑏𝑤𝐷

−1
𝑤 .

If we assign at least two blocks per node (or core), there is no (inter-node) communication required
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while the inversion of the blocks. If the operator has only next-neighbour interaction, the method
is simple to implement and it acts effectively on the large eigenvalues of the operator. Due to that
it is used as a smoother in multi-grid methods, see e,g. [28].

The other part of an effective multi-grid procedure, which solves efficiently the Dirac equation,
is a correction of the iterate which acts on the low modes. As pointed out in [26] low modes of
the Dirac operator can be captured via local coherence and approximated via a coarse grid operator
which can be build via suitable projection operators 𝐷𝑐 = 𝑅𝐷𝑃. Now, a flexible GMRES/GCR
Krylov method preconditioned with such coarse grid correction is highly effective for fermion
discretizations like Wilson clover or twisted mass fermions, outperforming standard methods like
the CG solver by more than two magnitudes [27–30]. For other fermion discretization such methods
are under development and do not reach similar speed-ups yet [31–34].

Multigrid solvers can be used to significant speed-up HMC simulations. However one needs
to take into consideration some points, e.g. the limited scalability. At the large scale the scaling is
limited by the coarse grid size while at the lower limit by the memory. Additional it comes with an
overhead due to the update of the multi-grid subspace during MD.

To overcome limitations, multiple efforts are ongoing to improve the multigrid performance,
e.g. kernel improvements based on multiple right hand sides. This increase the algorithmic intensity,
leading to a potential for speed up on GPU architecture roughly by a factor 2 - 4. Such kernel are
now available in the software packages QUDA. Additional improvements can be achieved by using
communication avoiding Krylov iterative procedures, such as pipelined GCR [46] or communication
avoiding CG, see e.g. [36]. Additional coarse grid deflation at physical pion masses have the potential
to further speedup the solver. As pointed out in [35], the deflation space can be build up during
the solver, via GCR-DR methods. These developments of DDalphaAMG are currently ported to a
modern C++ layout, to enable prototyping of novel algorithms within the complex multi-grid setup,
see for performance results with open boundary condition [37].

3.0.1 Higher order integrators

Figure 2: Scaling of different hessian free force gradient integrators with
the cost per MDU. Details can be found in [41].

The HMC algorithm
requires for the MD inte-
gration a volume preserv-
ing, reversible integrator.
An collection of higher or-
der schemes mainly based
on force gradient integra-
tors can be found in [38]
while for hessian free ver-
sions in [41].

An example is the extension of the second minimal norm scheme, which becomes a fourth
order integrator if a force gradient term is added

Δ(ℎ) = 𝑒ℎ 1
6 �̂�𝑒ℎ

1
2 �̂�𝑒ℎ

2
3 �̂�−172ℎ3�̂�𝑒ℎ

1
2 �̂�𝑒ℎ

1
6 �̂� (2)

where 𝐶 = 2
∑𝑉,3

𝑥=1,𝜈=0
𝜕𝑆

𝜕𝑈𝜈 (𝑥 )
𝜕2𝑆

𝜕𝑈𝜈 (𝑥 )𝜕𝑈𝜇 (𝑥 ) [40]. The required calculation of the Hessian can be
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express via two applications of the gradient. Namely by following the trick introduced to lattice
QCD by Lin and Mawhinney [39] the term can be approximate numerically by

1. Compute a temporary position update via Q′ = exp
(
−2ℎ2

𝑚
𝑑 (𝑛)e 𝑗 (𝑉)T 𝑗

)
Q

2. Compute a usual momentum update using Q’ : P𝑏 (𝑛)ℎ = P0 − 𝑏 (𝑛)ℎe𝑖 (𝑉 (Q′))T𝑖

Note, that this introduces additional higher order terms, which needs to be taken into account for six
or even higher order integrators [41]. The method is available in different software suites, recently
also in openQCD-2.4 [42].

3.1 HMC on GPUs

In the last decade HMC simulations could be significantly speed up by utilizing multigrid
methods by roughly a magnitude and by utilizing computations on the GPU by an additional
magnitude [43]. Extrapolating the cost towards a large lattice of size L=192, this gives roughly
∼ 1000 Node hours per MDU (4x A100). This seems to be in reach with exascale computing because
with current preconditioning techniques, like usage of multigrid solvers and Hasenbusch mass-
preconditioning, simulation at physical quark masses are possible. Note that further investigation
beyond scalability, like reversibility of the HMC need to be investigated to reach very large lattices.
This might require to use quarter precision in parts of the algorithms and might shift the application
towards an SME based algorithm [50, 51].

3.2 Additional ways to accelerate HMC-simulations ?

A possible way to utilize the single node performance in the HMC is to exploit the locality
of the lattice action. This can be achieved by domain decomposition techniques, pioneered in
[44]. Now with the improve node-level performance and larger memory on the GPU large local
lattice of size 324 are possible. The required operator is currently implemented within the modern
software framework grid [45]. The general idea is to preconditioning the fermions via domain
decomposition:

det𝐷 = det𝑆 ·
∏
𝑏

det𝐷𝑏 (3)

with the Schur complement 𝑆 = 1 − 𝐷−1
𝑤𝑤𝐷𝑤𝑏𝐷

−1
𝑏𝑏
𝐷𝑏𝑤 .

Now the integration of the local parts det𝐷𝑏 is independent of the global part if the boundary
links between the domains, i.e. which are contained in the hopping terms 𝐷𝑤𝑏 are freezed during
the MD integration. By increasing to sufficient large size, this effectively utilizes the single-node
performance and avoids communication in the local part dominated by UV fluctuation [45].

Another way of making use of large scale machines is to exploit the parallelism introduced by
the rational HMC [47, 48]. Namely, by simply split the fermion determinate into N-pieces, via

det𝐷 =

𝑛∏
det𝐷1/𝑛 (4)

and distribute each 𝑛th root on a different local partitions. Now the inversions require only to
exchange force terms during HMC integration. Note that rational approximation can be combined
with multigrid solvers, e.g. by using initial guesses the heavy quark sector of ETMCs sector could be
speed up by more than a factor 2 [49]. In a similar manner multi-level sampling or multi-tempering
techniques can make use of large HPC machines.
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4. Algorithms for finer lattices

To reach higher precision it is important to minimize systematic effects arising from the
continuum extrapolation. A simple way here is to simulate at finer lattice spacings. This is
challenging for HMC simulations due to critical slowing down [52]. At fine lattice spacings the
HMC algorithms can not sample efficiently different topological sectors which make simulation
below 𝑎 < 0.04 fm on current supercomputers very expensive and in case of periodic boundary
condition unfeasible. As investigated by [53] the local fluctuation of the topological charge can be
understood by a tunneling term and a diffusion term, with

𝜏tunn(𝑄) = 𝐶tunnexp(0.9/𝑎) and 𝜏diff(𝑄) = 𝑇/8𝐷diff (5)

where the first term describes the spontaneous creation or destruction of a topological charge and
the second term describes the diffusion timescale through the lattice, see also Fig. 3. If charges
can enter the lattice via open boundaries the autocorrelation is dominated by the time the charge
diffuses from the boundary to the physical region. This leads to 𝐷diff ∝ O(1)𝑎2 − O(1)𝑎4, which
corresponds to 𝜏𝑖𝑛𝑡 > O(100) for lattice spacings 𝑎 < 0.05 fm [54]. Here, tunneling of topological
charges is highly suppressed with 𝐶tunn ∝ O(1), see for details [53] .

 10

 100

 1000

 10000

 0.08  0.1  0.12  0.14  0.16  0.18  0.2  0.22

a (fm)

τdiff
τtunn

Figure 3: The figure, taken from [53], shows the
scaling of the tunneling and diffusion timescales in
case of HMC simulation with the DWB2 action.

To overcome this limitations novel algo-
rithms have to improve eq. (5), by minimizing
the coefficients or changing the scaling laws.
Lets take a look to the general structure of a
MC step, which is given by

1. Propose U’ according to 𝑇0(𝑈 → 𝑈′)

2. Accept-reject 𝑃𝑎𝑐𝑐 (𝑈 → 𝑈′) =

min
[
1, �̃�(𝑈)𝜌(𝑈′ )

𝜌(𝑈) �̃�(𝑈′ )

]
.

Obviously the proposal 1.) has to have an im-
proved autocorrelation but for an efficient al-
gorithm, the acceptance rate of the second step
should be high. Here, we will discuss two pos-
sible approaches which allow tunneling by 1.)
independent sampling via gauge flows and by 2.) effectively diffuse fluctuations into the target
region via multi tempering.

4.1 Flow

4.1.1 Flows approximating trivial maps

One possibility to allow tunneling between different topological sectors is by propose a new
configuration independently of the previous one. This, in principle, can be done via a trivializing
map, see [8]. Here we will discuss its application to pure gauge theories, i.e. described by a plaquette
action. The idea of a trivializing map is to start with gauge links distributed uniformly with 𝑟 (𝑈0)
and define a map 𝑓 −1(𝑈0) → 𝑈, which flows the gauge links to the non-trivial target distribution.

6
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A possible way is to approximate such map via gauge-equivarient coupling layers with a
traceable Jacobian, which update a subset of gauge links [57–60]. The flow distribution is given
by the Jacobian over the coupling layers �̃�(𝑈) = 𝑟 ( 𝑓 (𝑈)) ·

���det𝜕 𝑓 (𝑈)
𝜕𝑈

���. Now, we can introduce
convolutional networks within the layers and train the maps via the Kullbeck-Leibler diversion,
such that �̃�(𝑈) ≈ 𝜌(𝑈).

Now this approach allows for generating gauge configurations, via direct sampling and accept-
reject the proposal via

𝑃𝑎𝑐𝑐 = min
[
1,
𝜌(𝑈′) �̃�(𝑈)
�̃�(𝑈′)𝜌(𝑈)

]
(6)

The proposed gauge configurations are independent, because each new one is drawn from an uniform
distribution. However, larger autocorrelation are introduced if the corresponding acceptance rate
is small. Indeed this is the case for larger volumes, where the acceptance rate breaks down with
∝ 𝑒−𝑉 .

Ways to overcome the break down of the acceptance rate is currently under intensive inves-
tigation. Note, that there are different ways to set up such flow, a possible alternative is given
by continuous flows [61]. Here, a differential equation is used to transform the gaugefield. This
has the advantage that symmetries of the theory are exactly preserved, such as translational invari-
ance. However the tuneable parameters are introduced as linear coupling terms, which limits the
optimization potential and the introduction of higher loop terms becomes a computational challenge.

In general, as long as the Jacobian of the transformation is tracktable, flows can be also applied
to deform the path integral. This can minimize introduced fluctuations when first derivatives or
small corrections with respect to observables has to be calculated [65, 66], e.g. of applications of
the Feynman-Hellmann method or reweighting.

4.1.2 Localization of flows

0.1 0.2 0.3 0.4
1/

10-6

10-4

10-2

100

T
(Q

) 
0.

5 /L

FG-flowGC
flowGC
HMC

Figure 4: The figure shows the tunneling frequency
of the topological charge in the 2D-U(1) model for
different MCMC algorithms, see also [67].

A possible way to overcome the breakdown
of the acceptance rate ∝ 𝑒−𝑉 is given by utiliz-
ing the locality of the gauge model and propose
updates within a finite domain. This was suc-
cessfully tested in the 2D-U(1) model [67], by
localizing the flow to a domain. This can be
done by fixing the boundary links of a domain
and only transform links within the domain.
Due to the ultra locality of the gauge action
larger volumes can be than trivial generated.

A possible drawback of the flow ap-
proaches, is however, that during the flow
transformation, the lattice spacing is effectively
changed while the number of links is kept con-

stant. This changes the physical box size while intuitively it is more ideal to keep the physical size.
How this can be introduced into the flow approaches is under investigation [64] and is based on
adding new physical degree while mapping towards the target region. Towards models with higher

7
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dimensions, such as 4D, this becomes hard, because the number of missing links increases drasti-
cally. Successful application are given in lower dimensional models applied within renormalization
group theory transformation, see [9].

Another way is to effectively fine grain local defects into the target region. The idea is to
place a local defect and smooth it out into the surrounding region. This can be done by using flow
transformations based on localized and center symmetric coupling layers [68]. Now, one can train
such fine graining map by introducing a topological aware training condition. In 2D-U(1) proposals
which allows topological transition can be achieved by starting with a defect localized to a single
plaquette, i.e. the four links .

Test in 2D U(1) or the Schwinger model, shows that the approach can mild down the behaviour
of critical slowing down. The tunneling rate drops only mildly towards fine lattices, while the HMC
breaks down, see Fig. 4. Application to 4D are so-far limited to relative small lattice sizes [63],
however roughly 𝐿/𝑎 > 0.5 fm should be reached to allow tunneling in 4D-SU(3). While direct
sampling of these sizes are not yet in reach, combination with tempering approaches are looking
promising. Moreover flows are currently under intensive research, so that advances in the near
future are likely.

4.1.3 Localization with global corrections

So far the here discussed flows were only applied to pure gauge theories. In order to utilize
them within lattice QCD simulations, the fermion contributions has to be taken into account. This
can be done by extending the sampling space by including pseudofermions [69].

Another possible way is to include fermions via correction steps. This is done by the intro-
duction of an additional accept-reject step with the fermion determinant [44, 70]. Obviously, this
step suffers from the extensive nature of the determinant, i.e. the acceptance rate drops proportional
with ∝ 𝑒−𝑉 . This can be overcome by making use of the locality of the action. The determinant
can be decomposed via det𝐷 = det𝑆 · det𝐷𝑏,𝑏det𝐷𝑟 ,𝑟 , where the Schur complement is given by
𝑆 = 1 − 𝐷−1

𝑟 ,𝑟𝐷𝑟 ,𝑏𝐷
−1
𝑏,𝑏
𝐷𝑏,𝑟 where the red and black block operators 𝐷𝑟 ,𝑟 and 𝐷𝑏,𝑏 are defined

on domains. Now, one can introduce a hierarchy of filter steps, by first accep-reject local parts
followed by a global correction step, which involves the Schur complement [70]. By using correla-
tions acceptance rates of > 90% can be reached in case of the Schwinger model. The applications
to 4D-SU(3) are possible by using stochastic methods for estimating the determinant ratios [70] and
requires implementation of domain decomposition techniques, which are being conducted within
the software packages QUDA and grid.

4.2 Multi-tempering algorithms

Another algorithmic approach, which potentially can overcome the critical slowing of topo-
logical tunneling, is given by multi-tempering [71, 72]. The basic idea is to run several MCMC
chains in parallel using different sampling distributions, at least one with a mild scaling �̃� and one
𝜌 in the target space from which configuration are sampled. To unfreeze the topology, a swapping
step between the distribution is introduced

𝑃𝑠𝑤𝑎𝑝 (𝑈1 ↔ 𝑈2) = min
[
1,
�̃�(𝑈1)𝜌(𝑈2)
𝜌(𝑈1) �̃�(𝑈2)

]
(7)
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where 𝑈1 is switched with 𝑈2 if the swap is accepted. Tempering works if the acceptance rate is
reasonable high, i.e. if �̃� and 𝜌 are similar to each other.

4.3 Multi-tempering algorithms with a meta potential

A possible choice for �̃� is by adding a meta-potential to 𝜌, which allows for topological
transitions [73]

𝑉𝑡 (𝑠) =
∑︁
𝑡≥𝑡

𝑁∏
𝑖=1

𝑔(𝑠𝑖 − 𝑠𝑖 (𝑡′)) (8)

with Gaussian 𝑔(𝑠𝑖) = 𝜔exp
(
− 𝑠2

𝑖

2𝛿𝑠2
𝑖

)
where for 𝑠 an approximation to the topological charge is

used. Note, the build up of the meta-potential comes with an larger computational overheads and
requires to generate a rather long MCMC chain. However the corresponding costs can be likely
minimized by educated guesses.

By adding only the meta-potential, the swapping probability reduces to

𝑃𝑠𝑤𝑎𝑝 = min
[
1, 𝑒−𝑉𝑡 (𝑈𝑚𝑒𝑡𝑎 )+𝑉𝑡 (𝑈0 )

]
. (9)

The effectiveness of the approach is studied in SU(3) 4D pure gauge theory and tested on lattices
with spatial extend of 𝐿 = 22 (see Fig. 5). Note this approach is significant improved to the previous
used reweighting approach. The topological transition occurs more frequent but the decoupling
time is still sizeable. Additional the volume scaling of the approach is still under investigation as
well as its application to dynamical fermion simulations.

4.3.1 Multi-tempering sampling with a defect

0 2000 4000 6000 8000 10000

Monte Carlo time

−6

−4

−2

0

2

4

6

Q
c

MetaD-HMC (5stout)

MetaD-HMC (10stout)

1HMC

Figure 5: The figure, taken from [73], shows the
evolution of the topological charge using the HMC
with and without meta potentials.

Another possible choice for �̃� is given by
utilizing the 𝑎−2 scaling of the topological dif-
fusion. This can be done by opening the lattice
via a defects in the lattice. Effectively the gauge
coupling 𝛽 of the pure gauge action within a re-
gion, for example in a 3D cube of size l=2, is
changed . Namely for �̃� the gauge coupling 𝛽
of the defect is set to zero and interpolate to-
wards the target chain with 𝜌 back to the target

𝛽. The swapping step is given by 𝑃𝑠𝑤𝑎𝑝 (𝑙 ↔ (𝑙 − 1)) = min
[
1, exp(−𝑆𝑙−1 (𝑈 (𝑙) )−𝑆𝑙 (𝑈 (𝑙) ) )

exp(−𝑆𝑙 (𝑈 (𝑙−1) )−𝑆𝑙−1 (𝑈 (𝑙−1) ) )

]
. As

demonstrated in [75], this works very well for SU(N) theories. Here 16 levels between target and
defect needs to be introduced to reach a swapping rate of 20%. Note due to swapping of the
chains the autocorrelation function becomes rather non-trivial, e.g. longer autocorrelation modes
are potentially hidden due to frequent chain swaps.

As shown recently [77], due to the localization of the defect, it is possible to include fermions,
i.e. using staggered fermions at physical pion masses. By only include the defect within the gauge
action, the fermion weight drops out of the swapping step and decent swapping rates of 20% were
reached by introducing 10 chains. This leads to unfreezing of the topological charge however
by increasing the computational cost proportional with the number of tempering levels. So far

9
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the approach is limited to one defect, i.e. scaling towards larger lattices might be not optimal and
further investigations are needed to understand the scaling of the diffusion-tunneling effects. Overall
the approach allows topological sampling of lattices without the need of open boundaries even at
physical pion masses and is a very promising step towards enabling simulations at very fine lattice
spacings.

4.3.2 Multi-tempering with flows

To reduce the cost of multi-tempering, i.e. the number of tempering levels, a combination with
gauge flows are promising. Namely, the standard swapping steps do not act on the gauge links but
only changes the probability distributions. Introducing the gauge flow within the swapping steps,
enables to act on the gauge links and increase so the overlap towards the proposed distributions. If
the Jacobian of the transformation is tracktable, for the swapping step follows

𝑃𝑠𝑤𝑎𝑝 (𝑙 ↔ (𝑙 − 1)) = min
[
1,
𝑝𝑙−1(𝑈′(𝑙) 𝑝𝑙 (𝑈′(𝑙−1) )
𝑝𝑙 (𝑈′(𝑙) 𝑝𝑙−1(𝑈 (𝑙−1) )

𝐽 𝑓 (𝑈 (𝑙−1) )𝐽 𝑓 −1 (𝑈 (𝑙) )
]
. (10)

For the gauge flow, one can utilize the techniques used for the trivializing maps and train neural
networks in order to achieve high swapping rate. As shown in [62], this effectively minimizes the
number of required level, i.e. from O(10) to O(1). Further investigations are required to make use
of the full potential, i.e. optimal size of the defect, training procedure or inclusion of fermions.

5. Algorithms for higher statistics

4
2
0
2
4

Q

= 5.95  REX  HB+OR = 6.00  REX  HB+OR = 6.05  REX  HB+OR

0 2000 4000
MCMC steps

4
2
0
2
4

Q

= 5.95  T-REX

0 2000 4000
MCMC steps

= 6.00  T-REX

0 2000 4000
MCMC steps

= 6.05  T-REX

Figure 6: The figure, taken from [62], shows the comparison between
the application of the T-REX algorithm compare to the MCMC chains
without tempering.

Another major challenge is
to measure observables to a high
precision. This is often notori-
ous difficult due to an exponen-
tial growing of the noise rela-
tive to the signal, e.g. in case
of the nucleon ∝ exp{−(𝑚𝑁 −
3/2𝑚𝜋)𝑡}. This allows only to
extract quantities, such as the
effective mass, within a small
time-window, i.e. examples are discussed in [4, 5, 79].

Method which acts on the width are improving the achievable precision. At the lower bound,
for short time distances, excited states contaminates the signal and the region to extract the quantity
of interest starts at larger time distance. A way to minimise the contamination is to resolve the
excited states, e.g. by extending the correlation matrix with appropriate operators. A method, which
proved to be effective here, is to utilize distillation by introducing optimised profile to the basis
[78], see also [10].

The signal at large time distance is usually dominated by noise and its onset limits the region.
Due to the statistical nature, it can be suppressed via increasing the number of measurements.
Obviously, due to the exponential gap between noise and signal, simply increasing statistic is rather
limited.
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5.1 Multi-level sampling

A promising methods to further minimize this gap, is given by using multi-level sampling. The
general idea, is to sample domains of the lattice independently from each other and recombine them
in the measurements later. If the decomposition is effectively utilizing the locality of the model,
e.g. by freezing links between the active domains, the statistical error can be minimized with 𝑁−𝑛𝑑/2

where 𝑛𝑑 is the number of measurements.
In pure gauge theories, multi-level techniques were successfully applied [80–83]. Recently, the

effectiveness were studied in case of glueball measurements [84]. Here, it was sufficient to freeze
the links within one time slice to observe a reduction of the error. In detail, the reduction effect
depends on the lowest mode in the channel and the distance to the frozen region [85].

Multi-level sampling can be also applied to models with fermions. This, however, is more
challenging due to character of the fermions. Using domain decomposition technique, it is also
possible to effectively decouple the fermion parts. If the local parts are dominating the signal a
reduction effect similar to the pure gauge model can be achieved [86, 87]. One main difference is
that the lowest modes in models with fermions are naturally an order of magnitude smaller than
in pure gauge models, which makes multi-level sampling less effective. Additional the fermion
decomposition requires a larger frozen region, i.e. the distance between active regions needs to be
sufficient large that they can effectively be sampled independently. For example in case of 300
MeV Pions the frozen region requires a distances of ∼ 0.5 to 0.8 fm, as investigated in [86, 87]. For
physical quark masses, this distance becomes larger ∼ 1.5 to 2.5 fm. In general this is exactly the
distance where statistical noise starts to dominantes the signal, i.e. effective mass plateaus of baryons
becomes very noisy for 𝑡 > 1.5 fm similar to the long distance signal for the HVP [88], which
makes further investigation in this direction attractive. However multi-level sampling at physical
pion masses are computational challenging and requires effective software solution, i.e. an open
source software version is currently missing. Additional multi-level sampling is very well suited
for parallel computing, i.e. generation of the local domains and calculation on the local domains
can be done independently from each other and can be used in masterfield-like applications.

6. Conclusion

To conclude the discussion on future trends, a well suited algorithm might be given by a
method based on multi-level sampling accelerated with local updates, which uses 4D Domain
decomposition in combination with localized updates which enables topological transitions. Such
methods is promising to enable simulation at very fine lattice spacing and is meeting hardware
requirements at the same time. For example multiple chains can be run in parallel (also very
suitable for multiple tempering), communication overheads can be avoided and localization can be
used to increase acceptance and statistics.

The development of such methods are very challenging. New software solutions are needed
and require major development efforts. Currently, there are no open source codes for multi-level
sampling as well as SU(N) flows available especially in combination with flexible kernels for
novel GPU architectures. However implementations of such solutions are currently ongoing. An
example is the software package grid [89, 90], where methods to enable Domain Decomposition

11
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HMC on GPUs are currently implemented. Similar efforts exist for the package QUDA, e.g. via
implementaion efforts like within an innovation study [91]. These methods will be handy when
the European Exascale machines, Jupiter and Alice Recoque, are coming online and will help to
further push the precision frontier in elementary particle physics.
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