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1. Introduction

One of the remaining puzzles of the Standard Model concerns the smallest and least well-known
element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2], 𝑉𝑢𝑏. The puzzle stems from
the discrepancy between the extractions of |𝑉𝑢𝑏 | from inclusive analyses, i.e., 𝐵 mesons decaying
to all possible light hadrons with a 𝑢 quark and a lepton-anti-neutrino pair, and exclusive analyses,
i.e., a 𝐵 meson decaying to a specific final state [3]. Currently, the PDG [4] quotes the inclusive
value |𝑉𝑢𝑏 | = 4.13(26) × 10−3 and the exclusive value |𝑉𝑢𝑏 | = 3.70(16) × 10−3, which are still in
tension even after a significant increase in the estimate of systematic uncertainties of the former.
Similarly, HFLAV [5] reports |𝑉𝑢𝑏 |excl = 3.51(12) × 10−3 and |𝑉𝑢𝑏 |incl = 4.19(17) × 10−3, which
are in larger tension than the PDG values. FLAG [6] also performed an exclusive determination,
which agrees with the exclusive analyses from PDG and HFLAV. The five different values are shown
in Fig. 1; the fairly large discrepancy between the inclusive and exclusive determinations indicates
that something is unclear about this Standard Model parameter, be it New Physics contributions
or uncontrolled systematic errors. There are multiple paths forward, but the clearest is to start

FLAG PDG HFLAV
3.4

3.6

3.8

4.0

4.2

4.4 ×10 3

inclusive
exclusive

Figure 1: Comparing the values of |𝑉𝑢𝑏 | determined by PDG [4], FLAG [6] and [5]. Diamonds correspond
to exclusive determinations while squares belong to inclusive determinations.

systematically adding further exclusive semileptonic processes and exploring alternative methods
for the inclusive determination [7]. A good candidate for a new exclusive process is 𝐵 → 𝜌ℓ𝜈̄.
Because the 𝜌 is a vector resonance, which decays strongly to a pair of pions, this process allows
for more angular observables than 𝐵 → 𝜋ℓ𝜈̄. Building a path toward resolving the 𝑉𝑢𝑏 puzzle by
adding 𝐵 → 𝜌ℓ𝜈̄ requires a reliable method for the underlying theory of hadrons. We use lattice
QCD, the first-principles, non-perturbative approach to Quantum Chromodynamics (QCD). Pre-
vious lattice calculations of 𝐵 → 𝜌ℓ𝜈̄ were performed in the narrow-width approximation, where
the 𝜌 is assumed to behave like a QCD-stable hadron [8–11]. This incurs uncontrolled systematic
effects of O( Γ

𝑚𝜌
) [12], where Γ is the 𝜌 strong decay width and 𝑚𝜌 is the 𝜌 mass. Here, we do not

use the narrow-width approximation and instead use the proper finite-volume formalism to treat the

2
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𝜌 as a resonance.

These proceedings are organized as follows. In Section 2 we describe our lattice setup and
in Section 3 we overview the finite-volume formalism employed in this work. Section 4 shows an
example of our data and discusses how we obtain the matrix elements, and we show our vector-
current form-factor results in Section 5. Section 6 summarizes.

2. Lattice Setup

In order to obtain a physical result, the appropriate limits in 𝑎 → 0, 𝑚𝜋 → 𝑚
phys
𝜋 and 𝐿 → ∞

need to be taken, but here we present preliminary results only on a single gauge field ensemble
with 𝑁 𝑓 = 2 + 1 clover fermions, where the light-quark mass corresponds to 𝑚𝜋 ≈ 320 MeV. The
lattice is 𝐿3 × 𝑁𝑡 = 323 × 96 with a lattice spacing of 𝑎 ≈ 0.114 fm. The dispersion relations for
the pion and the 𝐵 meson can be found in Refs. [13], and [14] respectively, and are consistent with
the relativistic continuum dispersion relations. This is achieved by using an anisotropic action for
the 𝑏 quark [15, 16].

3. The Finite-Volume formalism

One limit that differs significantly between what kind of hadrons are present in the process
is the 𝐿 → ∞ limit. For processes such as 𝐵 → 𝜋ℓ𝜈̄, where both the hadrons in the process are
stable under QCD, the 𝐿 → ∞ limit is straightforward - determine the matrix elements related to
the form factors at multiple volumes 𝐿 and then extrapolate to 𝐿 = ∞. This approach fails for the 𝜌
resonance, and needs to be replaced by an analysis of 𝜋𝜋 interactions in the finite volume. In their
seminal work, Lellouch and Lüscher [17] introduced a normalization correction factor for 𝐾 → 𝜋𝜋

decays. Their work was generalized by many [18–21] and finally made suitable for 𝐵 → 𝜋𝜋ℓ𝜈̄ by
Briceño, Hansen, and Walker-Loud in Ref. [22].

When a two-hadron state that interacts strongly is placed in a finite volume, the finite-volume
state is not the same as the infinite-volume state. Two main (finite-volume) effects of the strong
interactions between them are: i) the finite-volume energy shifts with respect to the infinite volume
[23], and ii) the normalization of the finite-volume state changes with respect to the infinite volume
[24]. Effect i) leads to the well-known Lüscher method in spectroscopy, where the finite-volume
spectrum can be related to the infinite-volume scattering amplitude via the quantization condition
[25, 26]

det
[
𝐹−1(𝐸★) + 𝑇 (𝐸★)

]
|𝐸★=𝐸★

𝑛
= 0. (1)

Here, 𝐹 is a linear combination of the Lüscher Zeta functions [27], where the coefficients are
determined by the symmetry of the finite volume for the given momentum, 𝑇 is the infinite-volume
2 → 2 scattering matrix, and the quantization condition is zero when the square root of the two-
particle invariant mass,

√
𝑠 = 𝐸★, is equal to one of the finite-volume energies 𝐸★𝑛 . Effect ii) leads

to a change in the relation between the infinite-volume and finite-volume states through [24]

|𝜋𝜋; 𝐸★𝑛 )⟩𝐿 ∼
√
𝑅 |𝜋𝜋(𝐸★ = 𝐸★𝑛 )⟩∞, (2)

3
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where |𝜋𝜋; 𝐸★𝑛 ⟩𝐿 is the finite-volume state with the finite-volume energy 𝐸★𝑛 , and |𝜋𝜋(𝐸★ = 𝐸★𝑛 )⟩∞
is the infinite-volume two-hadron state at the root of invariant mass 𝐸★ equal to the finite-volume
energy. Here, 𝑅 is the residue of the pole associated with the finite-volume state, which is defined
as

𝑅 = lim
𝐸→𝐸𝑛

𝐸 − 𝐸𝑛
𝐹−1 + 𝑇

. (3)

The transition amplitude describing the 𝐵 → 𝜌ℓ𝜈̄ can be obtained from the transition amplitude
of the 𝐵 → 𝜋𝜋ℓ𝜈̄ process when the 𝜋𝜋 are in 𝐼 = 1 and 𝑃-wave so that they couple to the 𝜌 resonance.
The infinite volume 𝐼 = 1, 𝑃-wave 𝐵 → 𝜋𝜋ℓ𝜈̄ matrix element can be written as

⟨𝜋𝜋; 𝑃, 𝜖 (𝑃, 𝑚) |𝐽𝜇 |𝐵; 𝑃𝐵⟩∞, (4)

where the initial state is a 𝐵 meson with four-momentum 𝑃𝐵 = (𝐸𝐵, ®𝑝𝐵), and the final state
⟨𝜋𝜋; 𝑃, 𝜖 (𝑃, 𝑚) is a two-hadron state with total four-momentum 𝑃 = (𝐸𝜋𝜋 , ®𝑃) and polarization
vector 𝜖 (𝑃, 𝑚). In the following, we limit the discussion to the vector current, 𝐽𝜇 = 𝑉 𝜇 = 𝑢̄𝛾𝜇𝑏,
whose matrix element can be decomposed under Lorentz symmetry to a single form-factor,𝑉 (𝑞2, 𝑠),
which is a function of the momentum transfer 𝑞2 = (𝑃𝐵 − 𝑃)2 and the two-pion invariant mass
𝑠 = (𝐸2

𝜋𝜋 − ®𝑃2) = 𝐸★2. The Lorentz decomposition takes the form

⟨𝜋𝜋; 𝑃, 𝜖 (𝑃, 𝑚) |𝐽𝜇 |𝐵; 𝑃𝐵⟩∞ =
𝑇 (𝑠)
𝑘

𝑖𝑉 (𝑞2, 𝑠)
𝑚𝐵 + 2𝑚𝜋

𝜀𝜇𝜈𝛼𝛽𝜖𝜈∗(𝑃, 𝑚)𝑃𝛼 (𝑃𝐵)𝛽 , (5)

where 𝑘 is the two-pion scattering momentum, 𝑘 = 1
2

√︁
𝑠 − 4𝑚2

𝜋 , and 𝜀𝜇𝜈𝛼𝛽 the four-dimensional
Levi-Civita symbol. Here, we included a factor of the scattering amplitude 𝑇 , which fully describes
the pole structure and singularities in 𝑠. Thus, 𝑉 (𝑞2, 𝑠) is a smooth function of 𝑠, with singularities
only in 𝑞2.

To relate the infinite-volume matrix element, ⟨𝜋𝜋; 𝑃, 𝜖 (𝑃, 𝑚) |𝐽𝜇 |𝐵; 𝑃𝐵⟩∞, with the finite-
volume matrix element, ⟨𝜋𝜋; 𝑛, ®𝑃,Λ, 𝑟 |𝐽𝜇 |𝐵; 𝑃𝐵⟩𝐿 , we project the infinite-volume matrix ele-
ments to definite irreducible representations of the relevant finite-volume groups [13], obtaining
⟨𝜋𝜋; 𝑛, ®𝑃,Λ, 𝑟 |𝐽𝜇 |𝐵; 𝑃𝐵⟩∞. Here, 𝑛 stands for the 𝑛-th state of the finite-volume spectrum for total
momentum ®𝑃, and Λ, 𝑟 are the irreducible representation and the row in which the 𝜋𝜋 state is,
respectively. The relation between the finite and infinite-volume matrix elements is then given by

⟨𝜋𝜋; 𝑛, ®𝑃,Λ, 𝑟 |𝐽𝜇 |𝐵; 𝑃𝐵⟩𝐿 =

√︃
𝑅Λ
𝑛 ⟨𝜋𝜋; 𝑛, ®𝑃,Λ, 𝑟 |𝐽𝜇 |𝐵; 𝑃𝐵⟩∞, (6)

where we added indices Λ and 𝑛 to the residue matrix, 𝑅, to emphasize that it needs to be in the
same irreducible representation and evaluated at the 𝑛-th energy level.

4. Lattice QCD calculation of the 3-point functions

The 3-point correlation functions relevant for the 𝐵 → 𝜋𝜋ℓ𝜈̄ are

𝐶𝑖3 = ⟨Ω|𝑂𝑖 (𝑡𝜌; ®𝑃,Λ, 𝑟)𝑉 𝜇 (𝑡𝐽 ; ®𝑞)𝑂†
𝐵
(0; ®𝑝𝐵) |Ω⟩, (7)

where the 𝐵-meson is created at timeslice 0, the current𝑉 𝜇 (𝑡𝐽 ; ®𝑞) with momentum ®𝑞 at timeslice 𝑡𝐽
changes the 𝑏-quark to a light quark, which propagates to timeslice 𝑡𝜌, where it is annihilated within

4
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a two-quark or four-quark operator labeled 𝑂𝑖 (𝑡𝜌; ®𝑃,Λ, 𝑟). Depending on the irrep Λ, we use three
or four interpolators 𝑂𝑖 (𝑡𝜌; ®𝑃,Λ, 𝑟) built from either one- or two-hadron operators and projected to
the irreducible representation Λ and row 𝑟 . We use an 𝑂 (𝑎) improved current of the form

𝑉 𝜇 (𝑡𝐽 ; ®𝑞) =
√︁
𝑍𝑢𝑍𝑏 (𝑢̄𝛾𝜇𝑏 + 𝑑 (𝑏) 𝑢̄𝛾𝜇𝛾𝑖∇𝑖𝑏), (8)

where 𝑑 (𝑏) is the improvement coefficient and 𝑍 𝑓 are the renormalization coefficients of the flavor-
conserving temporal vector currents for quark flavors 𝑓 = 𝑢, 𝑏. The 3-point correlation functions

q̄Γq b̄γ5q

q̄Vb
q̄γ5q

b̄γ5q

q̄Vb

q̄γq

Figure 2: The Wick contractions of the 𝐵 → 𝜋𝜋ℓ𝜈̄ transition. The left diagram shows the Wick contraction
for the single-hadron sink operator𝑂𝑖 , while the right diagram shows the Wick contraction for the two-hadron
sink operator 𝑂𝑖 .

can be diagrammatically represented as the Wick contractions shown in Fig. 2, while their numerical
value is shown in Fig. 3 for the example 𝐵3 irrep of ®𝑃 = 2𝜋

𝐿
[0, 1, 1]. The left two panels show the
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Figure 3: Examples of 3-point correlation functions are shown with filled circles; the left-most panel shows
the 𝑂𝑖=1 = 𝑞𝛾𝑖𝑞 operator, the second-to-left-most shows the 𝑂𝑖=2 = 𝑞𝛾𝑡𝛾𝑖𝑞 operator, the second-to-right-
most shows 𝑂𝑖=3 = 𝜋( ®𝑝1)𝜋( ®𝑝2) with | ®𝑝1 | = 0, | ®𝑝2 | = 2𝜋

𝐿

√
2, and the right-most shows 𝑂𝑖=4 = 𝜋( ®𝑝1)𝜋( ®𝑝2)

with | ®𝑝1 | = 2𝜋
𝐿

, | ®𝑝2 | = 2𝜋
𝐿

√
3. The relative uncertainties,

𝜎𝐶3,𝑖
𝐶̄3,𝑖

, are shown as filled diamonds.

one-hadron, 𝑞𝛾𝑖𝑞 and 𝑞𝛾𝑡𝛾𝑖𝑞 sink operators, while the right two panels show 3-point correlation
functions with two-hadron operators. To project the 3-point functions to a single finite-volume
state with definite energy, we use the generalized eigenvectors, 𝑢𝑛

𝑖
, of the variational analysis [13]:
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𝐶𝑛3 = 𝑢𝑛
𝑖
𝐶𝑖3. The linear combination yields an optimized correlation function that dominantly

overlaps with a single finite-volume state:

𝐶𝑛3 = ⟨𝜋𝜋; 𝑛, ®𝑃,Λ, 𝑟 |𝑉 𝜇 |𝐵; 𝑃𝐵⟩𝐿𝑍𝐵
𝑒−𝐸𝑛 (𝑡𝜌−𝑡𝐽 )𝑒−𝐸𝐵𝑡𝐽

2𝐸𝑛2𝐸𝐵
+ excited state cont., (9)

where ⟨𝜋𝜋; 𝑛, ®𝑃,Λ, 𝑟 |𝑉 𝜇 |𝐵; 𝑃𝐵⟩𝐿 is the desired finite-volume matrix element. The "excited state
cont." are similar products with matrix elements involving higher-energy states. By fitting the
optimized 3-point functions with models that can consider the excited state contamination, we can
determine the values of the matrix elements. In Fig. 4, we show such an example. We vary the fit
models and fit windows, yielding a plethora of fits for each of the 64 matrix elements spread across
different 𝑞2 and

√
𝑠. To determine a single matrix element, we use the AIC approach [28] to average

over the models and reduce model dependence.

Figure 4: An example of the state-projected 3-point correlation function without the Lorentz symmetry
factor. We factor out the leading-order temporal dependence to demonstrate the matrix element and excited
state contributions. Shown is the ground state of the irreducible representation 𝐵3 of ®𝑃 = 2𝜋

𝐿
[0, 1, 1] with

®𝑝𝐵 = 2𝜋
𝐿
[0, 1, 1]. The discrete data points are the lattice-determined matrix element, the light-shaded region

is the full model, which includes source and sink excited-state contamination, and the dark-shaded region is
the determined matrix element.

5. The fits to the finite-volume matrix elements

The fits to the finite-volume matrix elements are performed using parametrizations of the
infinite-volume matrix elements. We consider two types of scattering amplitudes 𝑇 , BWI and BWII
of Ref. [13], and parametrize 𝑉 (𝑞2, 𝑠) using a generalization of the 𝑧-expansion [29–31]

𝑉 (𝑞2, 𝑠) = 1

1 − 𝑞2

𝑚𝐵★

𝑛max,𝑚max∑︁
𝑛=0,𝑚=0

𝑎𝑛,𝑚𝑧(𝑞2)𝑛S𝑚, (10)

6
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where S =
𝑠−(2𝑚𝜋 )2

(2𝑚𝜋 )2 and

𝑧(𝑞2) =
√︁
𝑡+ − 𝑞2 − √

𝑡+ − 𝑡0√︁
𝑡+ − 𝑞2 + √

𝑡+ − 𝑡0
. (11)

Above, 𝑡+ corresponds to the 𝐵𝜋 threshold, and we use 𝑡0 = 6.0 in lattice units. The 𝐵∗-meson pole
is included explicitly as a prefactor in Eq. (10) and is located at our lattice energy 𝑎𝑚𝐵∗ ≈ 3.09556.
We use four different parameterizations of 𝑉 , which fall into two families of parametrizations:

F1) Combined order 𝐾:

𝑉 (𝑞2, 𝑠) = 1

1 − 𝑞2

𝑚2
𝑃

∑︁
𝑛+𝑚≤𝐾

𝐴𝑛𝑚𝑧
𝑛S𝑚, (12)

F3) Order 𝑁 in 𝑧, order 𝑀 is S:

𝑉 (𝑞2, 𝑠) = 1

1 − 𝑞2

𝑚2
𝑃

𝑁∑︁
𝑛=0

𝑀∑︁
𝑚=0

𝐴𝑛𝑚𝑧
𝑛S𝑚. (13)

The fits of the finite-volume 𝐵 → 𝜋𝜋ℓ𝜈̄matrix elements are summarized in Tab. 1. The average
of all the 𝑉’s, evaluated at 𝑠 = 𝑚2

𝑅
, is shown in Fig. 5. The three-dimensional representation is

model 𝑁 𝑀 𝜒2/dof
BWI + N0M0 0 0 1.18
BWI + N1M0 1 0 1.07
BWI + N0M1 0 1 0.63
BWI + N0M0 1 1 0.50
BWII + N0M0 0 0 0.55
BWII + N1M0 1 0 0.55
BWII + N0M1 0 1 0.52
BWII + N0M0 1 1 0.51

Table 1: Results of fits to 8 different models of the 𝐵 → 𝜋𝜋ℓ𝜈̄ transition amplitude. The left column lists
the parametrization (scattering amplitude + 𝑉). In the middle two columns, the truncation limits of the sum
in Eqs. (12) and (13) are listed, and the right-most column shows the 𝜒2/dof.

shown in Fig. 6 for the combination of the scattering amplitude BWII and the form-factor model
N1M1.

6. Summary

We have outlined the methodology used in determining the vector form factor of the process
𝐵 → 𝜋𝜋ℓ𝜈̄ with the 𝐼 = 1, ℓ = 1 𝜋𝜋 final state and presented preliminary results. For the ensemble
shown, with a pion mass of 320 MeV and 𝑎 ≈ 0.114 fm, we have achieved an approximately 6%
statistical and parametrization uncertainty in the high-𝑞2 region. These results demonstrate that
analyses of heavy-light 1 → 2 transition form factors are feasible and reasonable precision can
be obtained, encouraging further investigation in this process as well as other processes such as
𝐵 → 𝐾𝜋ℓℓ as well as 𝐵 → 𝐷𝜋ℓ𝜈̄ [32].
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V(
q2 ,s

=
m

2 R)

Figure 5: Preliminary results for 𝑉 (𝑞2, 𝑠 = 𝑚2
𝑅
). The curve shows the average over all the parametrizations;

dark-shaded regions represent statistical uncertainties, while light-shaded regions are the combined statistical
and systematical uncertainties from the variation of parametrizations.

Figure 6: The transition amplitude 𝑉𝐵→𝜋𝜋 = 𝑉𝑁1𝑀1 (𝑞2, 𝑠) 𝑇𝐵𝑊𝐼𝐼

𝑘
as a function of both

√
𝑠 and 𝑞2. The

curve shows the fitted transition amplitude, the bars are the lattice data mapped into infinite volume, and the
pink caps represent their statistical uncertainties.
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