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Figure 1: Connection of the putative QCD phase diagram for physical light quark masses to the chiral limit
in the front plane.

1. Introduction

Due to the smallness of the u, d-quark masses, the physical QCD phase diagram should be
closely related to the phase diagram in the chiral limit of mu,d = 0. In the latter case the phase
boundary as a function of temperature T and baryon chemical potential µB must represent a
non-analytic phase transition. The commonly expected qualitative phase diagram in (T, µB,mu,d)-
space [1–4], connecting the chiral limit with the physical situation, is depicted in Fig. 1. It is mostly
based on intuition from low energy effective models for QCD, like linear sigma models, the Namu-
Jona-Lasinio model or quark-meson models, which typically predict the chiral transition to be of
first order at vanishing temperature and of second order with O(4) universality at zero density. This
requires the existence of a tricritical point, where the transition switches order. From the tricritical
point in the mu,d = 0 symmetry plane emmanates a second-order wing line in the direction of the
symmetry-breaking field, which for mu,d = mphys corresponds to the expected critical endpoint [4].
It must be stressed that these expectations were formulated using model input. Using symmetry
arguments alone, the chiral transition in the massless limit could in principle also be entirely of
first or second order, without changing its nature, with quite different implications for the physical
point. These scenarios illustrate the importance of determining the QCD phase transition in the
chiral limit from first principles, even at zero density.

2. The nature of the chiral transition

2.1 The Columbia plot at µB = 0

The chiral phase transition in the limit of massless quarks cannot be simulated directly, even
at zero density. For nearly 40 years intuition on the chiral phase transition was guided by the
pioneering paper of Pisarski and Wilczek [5], who investigated the renormalisation group flow of
a three-dimensional sigma-model, supplemented by a ’t Hooft term for the U(1)A anomaly, as a
finite temperature effective theory for the chiral condensate by means of the epsilon expansion.
For Nf ≥ 3 degenerate massless flavours, no stable fixed point was found which would imply
the phase transition to be of first order. For Nf = 2 two different scenarios were proposed, with
an O(4) second-order transition in case the U(1)A remains anomalous at the chiral transition,
and a first-order transition in case it gets effectively restored. Later, also a second-order option
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Figure 2: The order of the QCD thermal transition as a function of the quark masses. Possible scenarios
proposed in [5] and observed on coarse lattices. From [6].
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Figure 3: The pion mass evaluated on the critical boundary between the crossover and first-order regions.
Left: Nf = 3, 4 unimproved staggered quarks [11]. Right: O(a)-improved Wilson quarks [12].

with a larger U(2)L ×U(2)R/U(2)V universality was suggested for this latter case [7]. Early lattice
simulations [8, 9] were consistent with these possibilities, which are displayed in so-called Columbia
plots, Fig. 2.

Distinguishing between these two scenarios by lattice simulations is a formidable task because
of the necessity to take both a continuum and chiral limit in the appropriate order. Moreover,
determining the location of the Z(2)-critical boundary line, which separates the mass ranges with
crossover behaviour from the one with a first-order chiral transition, requires finite size scaling
analyses of generalised cumulants of the order parameter over large portions of parameter space,
and is significantly hampered by critical slowing down. The general observation over the last two
decades is that this boundary is severely cutoff-dependent: it moves towards smaller quark masses,
i.e. the first-order region shrinks drastically, as the lattice is made finer. Examples from the literature
are shown in Fig. 3. Note that the first-order region on an Nτ = 6 lattice is nearly twice as wide for
O(a)-imrpoved Wilson fermions than it is for unimproved staggered fermions. On the other hand,
improved staggered actions see no first-order region at all in the accessible light-mass range. For a
more comprehensive review and reference list, see [10].

In order to resolve these issues, a new apporach was proposed in [13] by means of a change of
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Figure 4: Left: Columbia plot for strictly degenerate quarks with a continous number of flavours Nf . Right:
Data from simulations with standard staggered quarks for the critical line separating the crossover region
(above) from the first-order region (below) [6].

variables. Instead of interpolating between Nf = 3 and Nf = 2 degenerate light quarks by varying
m < ms < ∞, one may also consider strictly degenerate quarks with mass m and, once the quarks
have been integrated out (in continuum notation),

Z(Nf , g,m) =
∫
DA (det M[A; m])N f e−SYM[A] , (1)

the theory can be formally viewed as a statistical system of gauge field variables depending on
a continuous parameter 2 < Nf < 3. In particular for staggered fermions, whose determinant
is raised to the power Nf /4 in order to describe Nf mass-degenerate quarks, this is implemented
straightforwardly. The scenario Fig. 2 (right) then translates into Fig. 4 (left), with a tricritical N tric

f

replacing the tricritical strange quark mass of the original formulation. The Z(2)-critical wing line
enters the tricritical point in the chiral limit as

Nc
f = N tric

f + A(am)2/5 + B(am)4/5 . (2)

The mean field exponents in this expression are universal because the upper critical dimenison for
tricriticality is three (for a review on tricriticality, see [14]). This formulation offers an advantage
over the original one: since there is no chiral phase transition for Nf ≤ 1, any first-order transition
observed for Nf ≥ 3 must necessarily disappear in a tricritical point as Nf is gradually reduced.
Thus the same strategy can be applied independent of the final outcome: starting with a given
mc(Nf ≥ 3), follow the boundary line between the first-order and crossover region towards smaller
Nf . Once tricritical scaling as in (2) can be established, an extrapolation to the lattice chiral limit
is possible providing N tric

f
. On the lattice, there is an additional dependence on the lattice spacing,

viz. Nτ (with T = (aN−1
τ ), so that there is a tricritical line N tric

f
(Nτ) in the lattice bare parameter

space. The scenario Fig. 2 (left) then corresponds to N tric
f

< 2 in the continuum limit, and the
scenario Fig. 2 (right) corresponds to 2 < N tric

f
< 3 in the continuum limit.

Fig. 4 (right) shows data obtained with unimproved staggered fermions for various Nf and
three different Nτ = 4, 6, 8 [6]. The realisation of the schematic plot on the left is obvious, with a
first-order region below and crossover above the calculated critical lines. Indeed, good fits to (2)
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Figure 5: The Z(2)-critical line separating first-order transitions (below) from crossover (above), for unim-
proved staggered fermions [6] (left) and O(a)-improved Wilson fermions [12] (right), with tricritical scaling
fits to both. From [6].

are possible, suggesting that tthe quark masses are sufficiently small to have attained the tricritical
scaling region. From the extrapolation to the lattice chiral limit we learn that N tric

f
(Nτ = 4) ≈ 1.71(3)

and N tric
f
(Nτ = 6) ≈ 2.20(8). Thus, on the coarsest Nτ = 4 lattices the chiral transition looks as in

Fig. 2 (left), whereas on Nτ = 6 the scenario Fig. 2 (right) is realised. The Nτ = 8 data show that
there is no sign of the critical line converging towards a continuum limit, and no sign of the intercept
N tric
f
(Nτ) to approach a continuum limit either. In fact the data suggest the surprising conclusion

that the confinuum limit N tric
f
(Nτ = ∞) > 3.

A powerful check on this is that indeed analogous scaling forms are observed to hold when
the same data are projected to the (β, am) and (N−1

τ , am) parameter planes instead [6]. The latter
is shown in Fig. 5 (left). This plot is restricted to integer Nf values and just shows the behaviour
of the critical quark mass delimiting the first-order region as a function of lattice spacing. Note
however the rescaling of the vertical axis, so that (nearly) straight lines signal consistency with
(NLO) tricritical scaling. The corresponding extrapolations to the lattice chiral limit now produce
a function N tric

τ (Nf ), the inversion of the one discussed in the previous paragraph. Note that the
continuum limit is in the lower left corner of the plot. The existence of a finite N tric

τ (Nf ) then implies
that for this value of Nf any first-order chiral transition disappears once Nτ > N tric

τ . In other words,
first-order regions terminating in a finite N tric

τ are not continously connected to the conitnuum limit
and must be regarded as a lattice artefact. An important check of this statement is to test for the
opposite behaviour. If the first-order region for a given Nf connects to the continuum limit, then
there is no tricritical point and the critical quark mass in lattice units must go to zero as an ordinary
polynomial

amc(a) = amc(0)︸  ︷︷  ︸
=0

+c1(aT) + c2(aT)2 + . . . (3)

The data for Nf = 5, 6, 7 are incompatible with such behaviour, producing either χ2
dof > 10 or

negative mass ranges. Taking the uncertainty in the extrapolation into account, the analysis in
this variable pairing then leads us to the even stronger conclusion that any tricritical point in the
continuum is at N tric

f
(Nτ = ∞) > 6. Going back to our original case of interest, this implies that the

Nf = 3 theory in the chiral limit has a second-order phase transition.
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Figure 6: Leftt: Emerging continuum limit for the Columbia plot. The universality class in the three-flavour
chiral limit is not yet known. From [6]. Right: Extension of the Columbia plot to non-vanishing quark
chemical potentials, µ2 , 0. Negative µ2 are fully accessible without sign problem.

An immediate question is whether this finding is stable under a change of lattice action. For
the most interesting case of Nf = 3 we can immediately compare with the O(a)-improved Wilson
data from Fig. 3 (right). Replotting the same data with a rescaled vertical axis, and taking into
account that the pion mass am2

PS ∼ am towards the chiral limit, we obtain Fig. 5 (right). Perfect
tricritical scaling is observed, with fits far better than the original polynomial ones. Hence, also
O(a)-improved Wilson fermions are consistent with their first-order chiral transition terminating
at a finite N tric

τ , and therefore a second-order chiral transition in the continuum and chiral limits.
In similar developments, no signal for any non-analytic phase transition in the Nf = 3 theory is
observed using Highly Improved Staggered Quarks for pion masses down to mPS ≈ 40 MeV [15],
as well as using domain wall fermions down to physical light quark mass values [16, 17]. The
scenario with a second-order chiral transition at quark mass zero is therefore the only one without
contradictions between different discretisations.

The emerging result for the Columbia plot in the continuum is shown in Fig. 6 (left), with a
second-order phase transition at mu,d = 0 for all strange quark masses. Note that the universality
class presumably changes between the Nf = 2, 3 limits, where the effective chiral symmetry in the
lower left corner again depends on the fate of the axial anomaly. Finally, renewed investigations
of the most general low energy scalar models with fRG methods [18, 19] and numerical conformal
bootstrap [20], as well as a QCD investigation based on Dyson-Schwinger equations [21] are all
consistent with this picture, under certain conditions on the axial anomaly and related operators [22].

2.2 Extension to µB , 0

The next question is how the Columbia plot changes when a baryon chemical potential is
switched on. We restrict ourselves to purely imaginary chemical potentials, for which there is no
sign problem. An ongoing project repeats the previous analysis of the Nf and Nτ-dependence of
the chiral transition for unimproved staggered quarks at a fixed value of µB = i0.81πT . Preliminary
results show the same picture as at µB = 0, i.e., all first-order transitions observed for Nf ∈ [3, 6]
disappear in tricritical points before the continuum is reached [23]. Consistent with this is the
absence of any non-analytic chiral transition down to mPS ≈ 50 MeV in the Roberge-Weiss plane
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Figure 7: Spatial correlation functions with domain wall fermions show distinct E1, E2, E3 multiplets of the
approximate SU(4) chiral spin symmetry, at temperatures above the crossover. At large temperatures, these
reduce to the multiplets of the ordinary chiral symmetry. From [26].

at µB = iπT , observed using stout-smeared staggered as well as HISQ simulations [24, 25]. An
analysis of carefully truncated Dyson-Schwinger equations also finds a second-order transition at
mu,d = 0, which is stable under variations of chemical potential, both real and imaginary within
|µB | < 30 MeV. Altogether the Columbia plot can be extended by a µ2-axis and looks like Fig. 6
(right). Based on all available lattice results, the nature of the chiral transition does not show any
µB-dependence, at least in the imaginary direction. The widely expected phase diagram Fig. 1
would now require an additional critical surface branching off non-analytically from a tricritical
line in the (mu,d = 0)-plane at some µB > 0.

3. Emergent chiral spin symmetry above the chiral crossover

A SU(2)CS chiral spin transformation of Dirac fields is defined as

ψ(x) → exp
(
i®Σ · ®ε

)
ψ(x) , ®Σ = (γk,−iγ5γk, γ5) , [Σi, Σj] = 2iεi jkΣk , (4)

with k = 0, . . . 3 any of the euclidean gamma matrices. It is obvious that SU(2)CS ⊃ U(1)A. When
combined with isospin, SU(2)CS ⊗ SU(2)V can be embedded into the larger SU(4), which contains
the full chiral symmetry of the massless QCD Lagrangian, SU(4) ⊃ SU(2)L × SU(2)R × U(1)A.
In presence of a thermal medium there is a preferred Lorentz frame, and the massless quark action
can be written as

ψ̄γµDµψ = ψ̄γ0D0ψ + ψ̄γiDiψ , with [Σi, γ0γ0] = 0 , [Σi, γ0γj] , 0 . (5)

The colour-electric part of the quark-gluon interaction is thus CS- and SU(4)-invariant, while kinetic
terms, and thus the free Dirac action, as well as colour-magnetic interactions are not. Therefore,
chiral spin symmetry is never exact in physical QCD, but its approximate realisation is possible if the
colour-electric quark-gluon interaction dominates the quantum effective action in some dynamical
range. Surprisingly, this has been established to be realised in a temperature window of very roughly
Tch <∼ T <

∼ 3Tch, with Tch denoting the chiral crossover temperature.
On the lattice one can test for symmetries by computing correlation functions and their as-

socuated degeneracy patterns. Consider the euclidean meson correlators with J = 0, 1 and Γ some
Dirac matrix,

CΓ(τ, x) = 〈OΓ(τ, x)O†Γ(0, 0)〉 . (6)
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Full information about all excitations is contained in the associated spectral functions ρΓ(ω, p),

CΓ(τ, p) =
∫ ∞

0

dω
2π

K(τ, ω)ρΓ(ω, p) , K(τ, ω) =
cosh(ω(τ − 1/2T))

sinh(ω/2T)
. (7)

In an isotropic system in equilibrium, the spectral function is sufficiently constrained by the spatial
and temporal correlators averaged over the orthogonal directions,

Cs
Γ
(z) =

∑
x,y,τ

CΓ(τ, x) , Cτ
Γ (τ) =

∑
x,y,z

CΓ(τ, x) . (8)

An approximate multiplet structure compatible with the larger SU(4) chiral spin symmetry has been
observed in spatial [26] and temporal [27] correlators for Nf = 2 QCD with domain wall fermions,
see examples in Fig. 7. While the multiplets E1, E3 are also there in the case of the ecpected chiral
symmetry, the separate E2 multiplet requires the larger SU(4) synmetry. One is led to conclude
that the colour-electric quark gluon interaction, which is responsible for the confining string in
mesons, dynamically dominates this intermediate regime above the chiral crossover, and then gets
screened at some higher temperature Ts ∼ 3Tch, where the additional multiplet structure reduces to
the expected chirally symmetric one. Such patterns have been confirmed in similar investigations
using domain wall fermions with Nf = 2 + 1 [28] and Nf = 2 + 1 + 1 [29] flavours of quarks with
physical masses. One would then conclude that the intermediate regime is chirally symmetric, but
its dynamics still hadron-like rather than parton-like.

4. Pseudoscalar spectral function

Information about the nature of the effective degrees of freedom is contained in the spectral
functions, Eq. (7), whose extraction from discrete sets of lattice correlator data represents an ill-
posed inversion problem. However, the obstacle can be cicrumvented for stable, massive scalar
particles, such as the pion in QCD. The approach is based on exploiting micro-causality, which
ensures a representation of the spectral function [30, 31] in the form

ρPS(ω, p) =
∫ ∞

0
ds

∫
d3u
(2π)2

ε(p0) δ
(
ω2 − (p − u)2 − s

)
D̃β(u, s) , (9)

with β = 1/T , and a thermal spectral density D̃β(u, s). This allows to recover the Källen-Lehmann
vacuum representation smoothly as T → 0. For stable massive particles, such as QCD pions, the
authors argue for the analytic vacuum structure of the spectral density to be preserved in the absence
of a true phase transition, and propose an ansatz with thermally modified particle (thermoparticle)
and continuous scattering contributions,

D̃β(u, s) = D̃m,β(u) δ(s − m2) + D̃c,β(u, s) . (10)

In an isotropic medium the spatial correlators and the spectral density are then related by [32]

Cs
PS(z) =

1
2

∫ ∞

0
ds

∫ ∞

|z |

dR e−R
√
sDβ(R, s). (11)
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Figure 8: Left: Pion spectral function extracted from spatial lattice correlators. Right: Temporal correlator
predicted by that spectral function, compared to lattice data. From [32].

For temperatures below the threshold to the scattering states one expects the first term in Eq. (10) to
dominate. Neglecting the continuum part, the calculation of the spectral function is straightforward.
First, the spatial pseudo-scalar correlators from Fig. 7 are fitted by the sum of two exponentials
representing the π, π∗, which gives an excellent description of the data in the entire temperature
range. This provides the Dm,β(|x|) = απ,π∗ exp(−γπ,π∗ |x|), from which the spectral function can be
reconstructed using Eqs. (9,10) and the vacuum masses mπ,mπ∗ ,

ρPS(ω, p = 0) = ε(ω)

θ(ω
2 − m2

π)
4απ γπ

√
ω2 − m2

π

(ω2 − m2
π + γ

2
π)

2
+ θ(ω2 − m2

π∗)
4απ∗ γπ∗

√
ω2 − m2

π∗

(ω2 − m2
π∗ + γ

2
π∗)

2

 .
(12)

The result is shown in Fig. 8 (left) and displays the vacuum thresholds followed by a pronounced
resonance-like peak structure for both the pion and its first excitation. As a non-trivial test, the
temporal correlator is computed from the spectral function and compared to lattice data in Fig. 8
(right). A quantitatively accurate description is achieved except for the data point at the shortest
distance, which is smaller than m−1

π∗ and thus would require knowledge of higher excited states from
the spatial correlator. As the temperature increases, the peaks widen and gradually disappear into a
continuum, but only at temperatures significantly aboveTpc. This is in accordwith the approximately
chiral-spin symmetric window consisting of non-perturbative, hadron-like excitations. Finally, as
a further test of the generality of the thermoparticle approach for moderate temperatures of the
order of particle masses, equally successful descriptions are achieved for the QCD pseudoscalars
involving strange quarks [33] as well as for the dynamically completely different φ4-theory [34].

5. Implications for the QCD phase diagram

If there is an approximately chiral-spin symmetric temperature regime at zero density, then it
must necessarily extend to µB , 0, because baryon number ∼ ψ̄γ0ψ is invariant under chiral spin
transformations. From the behaviour of screening masses with imaginary chemical potential one
can infer that, for small chemical potentials, the chiral-spin symmetric band must bend downwards
to lower temperatures [35]. As the baryon chemical potential increases, µB>∼T , no further lattice
information is available and the further shape of this band is up to speculation. However, based
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Figure 9: A possible QCD phase diagram with a chiral-spin symmetric band. From [35].

on large Nc arguments, a so-called quarkyonic regime has been postulated in the cold and dense
regime beyond the baryon onset, in which the pressure scales as p ∼ Nc and which contains chirally
symmetric baryon matter [36]. Indeed, such a pressure scaling could be established within an
effective lattice theory derived by a combined character and hopping expansion [37]. Furthermore,
baryon parity doublet models are not only chirally symmetric, but also chiral-spin symmetric [38].
Finally, for large Nc also the chiral-spin symmetric range in the temperature direction should show
p ∼ Nc [39]. One plausible option would then be for these chirally symmetric and hadronic regions
in the T- and µB-directions to be part of the same chiral-spin symmetric band, as sketched in Fig. 9.
In addition, there may be a chiral phase transition line with a critical endpoint, such as predicted by
functional renormalisation group [40, 41] and Dyson-Schwinger methods [42].
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