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1. Introduction

Two-dimensional 𝑂 (𝑁) non-linear sigma models are renormalizable [2], exactly solvable
theories [3] and have many applications, from statistical mechanics to their use as QCD toy models
[4–7]. Consequently, they have been an object of thorough study via lattice QFT methods.

A simple supersymmetric extension of the 𝑂 (𝑁) non-linear sigma model is the sigma model
on the supersphere 𝑂𝑆𝑝(𝑁 + 2𝑚 |2𝑚)/𝑂𝑆𝑝(𝑁 + 2𝑚 − 1|2𝑚) ≡ 𝑆𝑁+2𝑚−1 |2𝑚, 𝑁, 𝑚 non-negative
integers. A number of analytic properties of it – such as the spectrum of local operators at the
renormalization group fixed-points, their integrability properties and their integrable deformations
– have been studied in [8–14]. This setup provides a simple ground to gain experience in analyzing
lattice quantum field theories of two-dimensional sigma models on supersymmetric target spaces.
These have important applications in various areas, ranging from statistical mechanics [15–18] to,
notably, string theory and the AdS/CFT correspondence [19, 20]. A lattice discretization of string
worldsheet models in AdS, however, may present non-trivial challenges [21–26].

In this paper, we work on the discretized version of the model introduced in [1] and present
preliminary numerical results for the specific cases 𝑂𝑆𝑝(3|2) and 𝑂𝑆𝑝(5|2).

This paper is organized as follows. In Section 2, we provide a brief overview of the model
and its key properties. In Section 3, we discuss the relation between 𝑛-point functions in the
𝑂𝑆𝑝(𝑁 +2𝑚 |2𝑚) sigma model and those evaluated in any other such model with different, positive
integer 𝑚 (𝑚′ below). In Section 4 we describe the simulation setting, in Section 5 we outline our
numerical approach for computing the two-point functions and discuss the features of the emerging
sign problem. Conclusions are drawn in Section 6.

2. The model

The 𝑂𝑆𝑝(𝑁 + 2𝑚 |2𝑚) non-linear sigma model is defined in terms of a superfield Φ that maps
a two-dimensional flat space to the supersphere 𝑆𝑁+2𝑚−1 |2𝑚, which is the target space of the model.
The superfield Φ can be decomposed in its bosonic and fermionic components

Φ ≡ (𝜙1, . . . , 𝜙𝑁+2𝑚, 𝜓1, . . . , 𝜓2𝑚) . (1)

The first 𝑁 + 2𝑚 components are bosonic and the remaining 2𝑚 are fermionic. We introduce the
following bilinear form:

Φ · Φ′ = 𝜙𝑇𝜙′ + 𝜓𝑇 𝐽 𝜓′ , (2)

where 𝐽 is the 2𝑚 × 2𝑚-dimensional canonical symplectic matrix

𝐽 =

(
0 1

−1 0

)
. (3)

For the superfield Φ to live on the supersphere, it has to satisfy the constraint:

Φ · Φ = 𝜙𝑇𝜙 + 𝜓𝑇 𝐽 𝜓 = 1, (4)
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The path integral is defined in the following way:

𝑍 (𝑁+2𝑚 |2𝑚) =

∫
𝐷 (𝑁+2𝑚−1 |2𝑚)Φ 𝑒−𝑆(𝑁+2𝑚|2𝑚) (Φ) (5)

where action and measure are

𝑆 (𝑁+2𝑚 |2𝑚) (Φ) = 1
𝑔

∑︁
𝑥,𝜇

𝑎2𝜕
𝑓
𝜇Φ𝑥 · 𝜕 𝑓𝜇Φ𝑥 =

2
𝑔

∑︁
𝑥,𝜇

𝑎2 [
1 − 𝜙𝑇𝑥+𝜇𝜙𝑥 − 𝜓𝑇𝑥+𝜇 𝐽 𝜓𝑥

]
,

𝐷 (𝑁+2𝑚−1 |2𝑚)Φ =
∏
𝑥

𝛿

(
1 − 𝜙𝑇𝑥𝜙𝑥 − 𝜓𝑇𝑥 𝐽𝜓𝑥

)
𝑑𝜙𝑥𝑑𝜓𝑥 ,

(6)

the sum over 𝜇 is over the two directions on the worldsheet and 𝜕 𝑓𝜇 is the discrete forward derivative
in the direction 𝜇.

Both lattice discretized action and path integral are invariant under the action of the supergroup
𝑂𝑆𝑝(𝑁 + 2𝑚 |2𝑚), whose algebra can be represented by the super-matrix

𝑆 =

(
𝑆𝜙𝜙 𝑆𝑇

𝜓𝜙
𝐽

−𝑆𝜓𝜙 𝑆𝜓𝜓

)
, (7)

where 𝑆𝜙𝜙 is an element of the so(𝑁 + 2𝑚) algebra, 𝑆𝜓𝜓 ∈ sp(2𝑚,R), while 𝑆𝜓𝜙 is an anti-
commuting 2𝑚 × 𝑁-dimensional matrix. The field coordinates transform as 𝛿Φ = 𝑆Φ, in other
words 𝛿𝜙 = 𝑆𝜙𝜙𝜙 + 𝑆𝑇

𝜓𝜙
𝐽 𝜓, 𝛿𝜓 = −𝑆𝜓𝜙𝜙 + 𝑆𝜓𝜓𝜓. The 𝑂𝑆𝑝(𝑁 + 2𝑚 |2𝑚) symmetry group

mixes the bosonic and fermionic degrees of freedom and thus can be interpreted as an internal
supersymmetry of the target space, the supersphere. However it is not a spacetime symmetry on
the flat 2d worldsheet. We point to the following properties of the partition function:

• For𝑚 = 0 and 𝑁 > 1, the supersphere non-linear sigma model reduces to the𝑂 (𝑁) non-linear
sigma model;

• The partition function of the 𝑂𝑆𝑝(𝑁 + 2𝑚 |2𝑚) and 𝑂𝑆𝑝(𝑁 + 2𝑚′ |2𝑚′) non-linear sigma
models are equal for any integer value of 𝑚, 𝑚′ > 0 and 𝑁 > 0;

• for 𝑁 > 0, the partition function 𝑍 (𝑁+2𝑚 |2𝑚) is identical to the partition function of the purely
bosonic𝑂 (𝑁) non-linear sigma model. This partition function is strictly positive for any real
value of 𝑔−1.

The 𝑂𝑆𝑝(𝑁 + 2𝑚 |2𝑚) non-linear sigma model for 𝑁 + 2𝑚 ≥ 1 can be proved to be renormal-
izable at all orders in the perturbative expansion with the lattice regulator, following the strategy
of [2]. The non-linear realization of the 𝑂𝑆𝑝(𝑁 + 2𝑚 |2𝑚) symmetry has strong implications on
the form of divergences in perturbation theory, and the Ward-Takahashi identities constrain the
form of possible counterterms, whose coefficients can be calculated as a function of only two
renormalization constants - the coupling constant 𝑍𝑔 and a unique field renormalization 𝑍Φ.

3. Equivalence of the correlation functions

The following identity of 𝑛-point functions holds

⟨𝜙𝑎1
𝑥1 · · · 𝜙

𝑎𝑝
𝑥𝑝𝜓

𝛼1
𝑦1 · · ·𝜓𝛼𝑟𝑦𝑟 ⟩(𝑁+2𝑚 |2𝑚)

= ⟨𝜙𝑎1
𝑥1 · · · 𝜙

𝑎𝑝
𝑥𝑝𝜓

𝛼1
𝑦1 · · ·𝜓𝛼𝑟𝑦𝑟 ⟩(𝑁+2𝑚′ |2𝑚′ ) , (8)

3



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
4

HU-EP-24/17-RTG
An update on the supersphere non-linear sigma model on the lattice Ilaria Costa

provided that 𝑎𝑘 ≤ min{𝑁 + 2𝑚, 𝑁 + 2𝑚′} and 𝛼𝑘 ≤ min{2𝑚, 2𝑚′}, where 𝑚′ is any non-negative
integer. We will briefly show how to get this result in this section. The 𝑛-point correlators are
defined as

⟨𝜙𝑎1
𝑥1 · · · 𝜙

𝑎𝑝
𝑥𝑝𝜓

𝛼1
𝑦1 · · ·𝜓𝛼𝑟𝑦𝑟 ⟩ =

1
𝑍 (𝑁+2𝑚 |2𝑚)

𝛿𝑛𝑍 [𝐾, 𝜂] (𝑁+2𝑚 |2𝑚)

𝛿𝜙
𝑎1
𝑥1 · · · 𝛿𝜙

𝑎𝑝
𝑥𝑝 𝛿𝜓

𝛼1
𝑦1 · · · 𝛿𝜓𝛼𝑟𝑦𝑟

�����
𝐾,𝜂=0

, (9)

where 𝐾 and 𝜂 are the sources for the bosonic and fermionic fields, respectively. The rapid
decay of the exponential in (5) at infinity in the bosonic variables allows the use of the following
representation of the delta function

𝛿(Φ(𝑥) · Φ(𝑥) − 1) = lim
𝜖→0+

𝑎2

2𝜋𝑔

∫
𝑑𝐿 (𝑥) 𝑒−𝑖

𝑎2
𝑔
{𝐿 (𝑥 )Φ(𝑥 ) ·Φ(𝑥 )−𝐿 (𝑥 )−𝑖 𝜖 |𝐿 (𝑥 ) | }

, (10)

Once the representation of the delta function in (10) is used, the integrals over 𝜙 and 𝜓 generated
from the functional derivative in (9) become Gaussian and can be explicitly calculated. The only
non-vanishing Wick contractions are

𝜙𝑎 (𝑥)𝜙𝑏 (𝑦) =
2𝑔𝛿𝑎𝑏

𝑎2(−□̂ + 𝑖𝐿)
(𝑥, 𝑦) , (11)

𝜓𝛼 (𝑥)𝜓𝛽 (𝑦) =
2𝑔𝐽𝛽𝛼

𝑎2(−□̂ + 𝑖𝐿)
(𝑥, 𝑦) . (12)

In particular, the expectation values in (8) do not vanish only if 𝑝 and 𝑟 are even. Assuming both
are true, we get

⟨𝜙𝑎1 (𝑥1) · · · 𝜙𝑎𝑝 (𝑥𝑝)𝜓𝛼1 (𝑦1)𝜓𝛽1 (𝑧1) · · ·𝜓𝛼𝑞 (𝑦𝑞)𝜓𝛽𝑝 (𝑧𝑝)⟩(𝑁+2𝑚 |2𝑚)

=
∑︁
𝜎∈Σ𝑝

∑︁
𝜏∈Σ𝑞

𝐶(𝑃 |2𝑄) (𝑥𝜎 (1) , . . . , 𝑥𝜎 (𝑝) , 𝑦1, 𝑧𝜏 (1) , . . . , 𝑦𝑞, 𝑧𝜏 (𝑞) )

×


1
2𝑝/2(𝑝/2)!

∏
𝑖=1,3,..., 𝑝−1

𝛿𝑎𝜎 (𝑖) ,𝑎𝜎 (𝑖+1)


sgn(𝜏)

∏
𝑖=1,2,...,𝑞

𝐽𝛼𝑖 ,𝛽𝜏 (𝑖)

 , (13)

where Σ𝑛 is the set of permutations of the first 𝑛 positive numbers, sgn(𝜏) is +1 (resp. −1) if the
permutation 𝜏 is even (resp. odd), and the functions 𝐶(𝑁+2𝑚 |2𝑚) are defined by

𝐶(𝑁+2𝑚 |2𝑚) (𝑥1, . . . , 𝑥𝑛) =
1

𝑍 (𝑁+2𝑚 |2𝑚)

(
𝑎2

𝜋𝑔

) −𝑁+2
2 𝑉

(14)

× lim
𝜖→0+

∫
𝐷𝐿 𝑒

1
𝑔

∑
𝑥 𝑎

2{𝑖𝐿 (𝑥 )−𝜖 |𝐿 (𝑥 ) | } det{−□̂ + 𝑖𝐿}− 𝑁
2

∏
𝑖=1,3,...,𝑛−1

2𝑔
𝑎2(−□̂ + 𝑖𝐿)

(𝑥𝑖 , 𝑥𝑖+1) .

Since the partition function depends only on 𝑁 , the 𝑛-point functions also are independent of the
value of 𝑚 or 𝑚′. Notice that this function does not distinguish between bosonic and fermionic
components. This is a consequence of the fact that the only differences in the fermion and
boson Wick contractions are in the Kronecker delta and 𝐽 and possible minus signs due to the
anticommutation of fermions.
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4. Simulation setting

We will now briefly review the discretized setting of the model used for our simulations. All
the details of the calculations can be found in [1]. We restrict to the case 𝑚 = 1, i.e. with only two
fermionic degrees of freedom, and consider periodic boundary conditions.

To run simulations of the theory, we have to manipulate the partition function to integrate
out the fermion fields. First, the delta function in (6) can be integrated out if we impose 𝜙 to be
expressed in the following way:

𝜙𝑎𝑥 = (1 − 𝜓1
𝑥𝜓

2
𝑥)𝜑𝑎𝑥 . (15)

The new variables 𝜑 satisfy the constraint 𝜑𝑇𝜑 = 1. This rescaling will give rise to interaction
terms that are quartic in the fermionic fields. With the introduction of auxiliary fields 𝐴𝜇 via a
Hubbard-Stratonovich transformation, the action can then be made quadratic in the fermionic fields.
We finally consider the following discretized effective action for the theory:

Seff =
∑︁
𝑥

[∑︁
𝑎,𝜇

2
𝑔

(
−𝜑𝑎𝑥+𝜇𝜑𝑎𝑥 +

1
2
𝐴𝑎 2
𝑥 ,𝜇

)
+

∑︁
𝑦

𝜓1
𝑥K𝑥,𝑦𝜓

2
𝑦

]
. (16)

The symmetric matrix K is defined as

K𝑥,𝑦 =𝑁 𝛿𝑥𝑦 +
2
𝑔

∑︁
𝑎,𝜇

[
𝜑𝑎𝑥

(
𝜑𝑎𝑥+𝜇 + 𝜑𝑎𝑥−𝜇

)
𝛿𝑥𝑦 + (𝐴𝑎𝑥 ,𝜇 + 𝐴𝑎𝑥−𝜇 ,𝜇)𝜑𝑎𝑥𝛿𝑥𝑦

]
−

∑︁
𝜇

2
𝑔
(𝛿𝑥−𝜇,𝑦 + 𝛿𝑥+𝜇,𝑦).

(17)

The first term comes from integrating out the delta function in (6) and thus is independent of 𝑔. We
can integrate the fermionic fields, leading to the following partition function:

Z =

∫ ∏
𝑥

𝑑𝐴𝑥𝑑𝜑𝑥 𝛿(𝜑𝑇𝜑 − 1) 𝑒−Sbos detK . (18)

Since K is a real matrix, its determinant is real. However, it is not generally positive and we will
see the emergence of a sign problem in the simulations, an issue that will be analyzed in more detail
in the next section. The final effective action that we have used for numerical simulations is then
obtained by re-exponentiating the modulus of the determinant.

Ssimul =
∑︁
𝑥,𝑎,𝜇

2
𝑔

(
−𝜑𝑎𝑥+𝜇𝜑𝑎𝑥 +

1
2
𝐴𝑎 2
𝑥 ,𝜇

)
+

∑︁
𝑥,𝑦

𝜒𝑇𝑥 (K2)−1
𝑥𝑦 𝜒𝑦 , (19)

where 𝜒 is a real pseudofermion. The sign of the determinant of K is then taken into account in
a reweighting factor. Once 𝑅 is generated, we compute all the observables using the reweighting
factor.

For the simulations, we have worked with a standard Hybrid Monte-Carlo [27]. We have
chosen the Molecular Dynamics Hamiltonian

H = −
∑︁
𝑥

[
1
2
(𝜋𝑎𝑥 )2 + 1

2

∑︁
𝜇

(𝑝𝑎𝑥,𝜇)2

]
+ Ssimul(𝜑, 𝐴), (20)

5
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where 𝜋 and 𝑝𝜇 are the conjugated momenta of 𝜑 and 𝐴𝜇 respectively. The conjugated momentum
𝜋𝑥 is constrained to be orthogonal to 𝜑𝑥 , and this guarantees that 𝜑𝑇𝜑 = 1 along the solutions of
the equations of motion. Above, we omit the dependence on 𝜒 of Ssimul, since the pseudofermion
is a spectator for the Molecular Dynamics. The symplectic integrator used to evolve the bosonic
fields is a generalization of the leapfrog integrator

𝜋𝑎1/2 = 𝜋𝑎0 − 𝜏
2 (P

𝜑

0 )𝑎𝑏 𝜕Ssimul
𝜕𝜑𝑏 (𝜑0, 𝐴0)

𝑝𝑎1/2,𝜇 = 𝑝𝑎0,𝜇 −
𝜏
2
𝜕Ssimul
𝜕𝐴𝑎

𝜇
(𝜑0, 𝐴0)

𝜑𝑎1 = cos(𝜏 |𝜋1/2 |)𝜑𝑎0 + sin(𝜏 |𝜋1/2 |)
𝜋𝑎1/2
| 𝜋1/2 |

𝐴𝑎1,𝜇 = 𝐴𝑎0,𝜇 + 𝜏𝑝
𝑎
1/2,𝜇

𝜋𝑎1 = cos(𝜏 |𝜋1/2 |) 𝜋𝑎1/2 − sin(𝜏 |𝜋1/2 |) |𝜋1/2 |𝜑𝑎0 − 𝜏
2 (P𝜑

1 )𝑎𝑏 𝜕Ssimul
𝜕𝜑𝑏 (𝜑1, 𝐴1)

𝑝𝑎1,𝜇 = 𝑝𝑎1,𝜇 −
𝜏
2
𝜕Ssimul
𝜕𝐴𝑎

1,𝜇
(𝜑1, 𝐴1).

(21)

P𝜑
𝑥 is the projector on the hyperplane perpendicular to 𝜑𝑥

(P𝜑
𝑥 )𝑎𝑏 = 1 − 𝜑𝑎𝑥 𝜑𝑏𝑥 , (22)

The momenta 𝑝𝑎𝑥,𝜇 are generated from the Gaussian distribution 𝑃(𝑝𝜇) ∝ 𝑒−𝑝
2
𝜇/2, while the mo-

mentum 𝜋𝑎𝑥 is constructed by generating an auxiliary momentum �̃�𝑎𝑥 from the Gaussian distribution
𝑃(�̃�) ∝ 𝑒− �̃�

2/2 and by setting 𝜋𝑎𝑥 = P𝑥 �̃�𝑎𝑥 . In principle, one could rewrite the equation for the
momentum 𝜋𝑎1 in (21) only in terms of 𝜙𝑎1 using the relation between 𝜙𝑎0 and 𝜙𝑎1 . However, we have
observed that this gives rise to numerical instabilities.

In order to compute the forces used in molecular dynamics we use Hasenbusch preconditioning
[28–30]: we replace the K2 operator with K2 + 𝜇2 in the generation of configurations. This allows
us to avoid convergence problems due to small eigenvalues fluctuating around zero. As Hasenbusch
mass we use 𝜇2 = 1

8 𝑔 , which we have found sufficient for all values of volume, 𝑔, and 𝑁 that
we considered. For the small volumes that we have considered other values of 𝜇2 give consistent
results. Larger volumes may need different values. We compute one reweighting factor accounting
for the Hasenbusch preconditioning and the sign using the eigenvalues of K

𝑅 = det( 1√︁
1 + 𝜇(K−1)2

) sgn detK =
∏
𝑖

1√︃
(1 + 𝜇2/𝜆2

𝑖
)

sgn detK . (23)

The eigenvalues are calculated using the PRIMME package [31, 32]. In reality, we truncate this
product and compute only a fraction of total eigenvalues, from the lowest up to a certain 𝜆𝑖max for
numerical stability reasons

𝑅 ≃
𝑖max∏
𝑖=1

1√︃
(1 + 𝜇/𝜆2

𝑖
)

sgn detK . (24)

We make sure that the truncation includes all negative eigenvalues and enough eigenvalues that the
truncation error is small enough. The sign of the determinant of the matrix K is found by counting
the number of negative eigenvalues. We are currently working on improving the calculation by
combining exact eigenvalues and stochastic noise vectors via deflation [33]. This would avoid the
systematic uncertainty introduced by the truncation.
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5. Numerical results and sign problem

We have run simulations for the𝑂𝑆𝑝(3|2) and the𝑂𝑆𝑝(5|2)-invariant models. For both theo-
ries, we have computed the bosonic and fermionic two-point function𝐶 (𝑡)𝑏 ≡

∑
𝑥,𝑎⟨𝜙𝑎 (𝑡, 𝑥)𝜙𝑎 (0, 0)⟩,

𝐶 (𝑡) 𝑓 ≡
∑
𝑥 ⟨𝜓1(𝑡, 𝑥)𝜓2(0, 0)⟩ at different lattice sizes. Since the volumes that we have considered

are small, we have only used point sources for the fermion disconnected contributions and we have
used wall sources to do zero-momentum projection.
Notice that we are interested in computing the two-point function for the original field 𝜙, which is
related to the fermionic and the rescaled field 𝜑 correlators in the following way:

⟨𝜙𝑎 (𝑡, 𝑥)𝜙𝑎 (0, 0)⟩ = ⟨𝜑𝑎 (𝑡, 𝑥)𝜑𝑎 (0, 0)⟩ − ⟨𝜑𝑎 (𝑡, 𝑥)𝜑𝑎 (0, 0)D(𝑡, 𝑥)⟩ (25)
− ⟨𝜑𝑎 (𝑡, 𝑥)𝜑𝑎 (0, 0)D(0, 0)⟩ − ⟨𝜑𝑎 (𝑡, 𝑥)𝜑𝑎 (0, 0)C(𝑡, 𝑥, 0, 0)⟩
+ ⟨𝜑𝑎 (𝑡, 𝑥)𝜑𝑎 (0)D(𝑡, 𝑥)D(0, 0)⟩,

where D(𝑡, 𝑥) and C(𝑡, 𝑥, 0, 0) identify the connected and disconnected components coming from
the Wick contractions of the fermion fields.

D(𝑡, 𝑥) = 𝜓1(𝑡, 𝑥)𝜓2(𝑡, 𝑥) = −K−1
𝑥𝑥 (26)

C(𝑡, 𝑥, 0, 0) = 𝜓1(𝑡, 𝑥)𝜓2(0, 0)𝜓1(0, 0)𝜓2(𝑡, 𝑥) = K−1
𝑥0 K

−1
𝑥0 . (27)

Fig. 1 and 2 show the fermionic and bosonic two-point functions at three different values of 𝑔 for
the 𝑂𝑆𝑝(3|2) and the 𝑂𝑆𝑝(5|2) models.
In all plots, the two-point functions are compared with the corresponding correlators of the Ising
or the 𝑂 (3)-invariant model, obtained with the Swendsen-Wang and the Wolff cluster algorithm
[34, 35].
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Figure 1: Two-point functions 𝐶 (𝑡) for the bosonic (in red) and fermionic (in blue) fields of the 𝑂𝑆𝑝(3|2)
model on a 4×4 lattice, expressed in lattice spacing units. The black dotted line represents the correspondent
two-point correlator for the Ising model.

We observe that the correlators are equal within 2𝜎 and thus behave as predicted from the
analytic results in equation (13). However, for smaller values of the coupling and higher lattice
sizes, the large statistical errors due to the sign problem render the results not a significant. The
sign problem appears to be more severe in the 𝑂𝑆𝑝(3|2) model as is evident in Fig. 1 and Fig. 3,
where we expect that ⟨𝑠⟩ → 1 only for very large values of 𝑔. On the other hand in the 𝑂𝑆𝑝(5|2)
case for 𝑔 ≳ 7 and for all the lattice volumes that we considered, the expectation value of the sign
is approximately 1. The fact that the sign problem improves in theories with a higher number of
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Figure 2: Two-point functions 𝐶 (𝑡) for the bosonic (in red) and fermionic (in black) fields of the 𝑂𝑆𝑝(5|2)
model on a 16 × 16 lattice, expressed in lattice spacing units. Here the black dotted line represents the
correspondent two-point correlator for the 𝑂 (3) model.

0 1 2
t/a

-0.5

0

0.5

1

1.5

C(t)

4x4 lattice

0 1 2 3 4
t/a

-10

-5

0

5

10

8x8 lattice

0 2 4 6 8
t/a

-20

-15

-10

-5

0

5

10

15

20

16x16 lattice

0 1 2
t/a

0.02

0.04

0.06

0.08

0.1

0.12

0.14

C(t)

4x4 lattice

0 1 2 3 4
t/a

0

0.02

0.04

0.06

8x8 lattice

0 2 4 6 8
t/a

-0.01

0

0.01

0.02

0.03

0.04

16x16 lattice

Figure 3: Plot of the correlators 𝐶 (𝑡) of the 𝑂𝑆𝑝(3|2) and 𝑂𝑆𝑝(5|2) model at same value of the coupling
𝑔 = 4.0. From the plots, it’s easy to notice that the effects of the sign problem on the correlators are less
visible in the 𝑂𝑆𝑝(5|2) models even on bigger lattice sizes.

bosons can be predicted from the form of the K matrix in (17): as the term proportional to 𝑁 grows,
the spectrum of the matrix becomes more and more positive. To further illustrate the effects of the
sign problem on the correlators, we plot the correlators of the 𝑂𝑆𝑝(3|2) and 𝑂𝑆𝑝(5|2) models at
a certain value of the coupling in Figure 3. From the plots, it is evident that the effects of the sign
problem on the correlators are less visible in the 𝑂𝑆𝑝(5|2) models, even on larger lattice sizes.

The behavior of ⟨𝑠⟩ as a function of the coupling and the lattice volume is shown in Fig. 4.
Even though the number of points is limited, we have tried some simple fits of the different ⟨𝑠⟩ with
the volume and the coupling. The fit appears consistent with an exponential behavior, decreasing
with the volume𝑉 or the inverse of the coupling [36]. Due to the severe sign problem in the current
HMC setting, exploring the range of physical interest, for example, the phase transition at 𝑔 ∼ 4 of
the 𝑂𝑆𝑃(3|2) model, appears impractical.

8



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
4

HU-EP-24/17-RTG
An update on the supersphere non-linear sigma model on the lattice Ilaria Costa

0 5 10 15 20
g

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

<
s>

4x4 lattice
8x8 lattice
16x16 lattice

0 5 10 15 20
g

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

<
s>

4x4 lattice
8x8 lattice
16x16 lattice

Figure 4: Values of ⟨𝑠⟩ computed for the 𝑂𝑆𝑝(3|2) (top figure) and the 𝑂𝑆𝑝(5|2) (bottom figure) as a
function of the coupling 𝑔.

6. Outlook

In this work, we have constructed a discretized action and an algorithm for simulating the
𝑂𝑆𝑝(𝑁 + 2|2) non-linear sigma model. We have presented numerical results for the bosonic and
fermionic two-point functions of the 𝑂𝑆𝑝(3|2) and 𝑂𝑆𝑝(5|2) sigma models.

We have observed the emergence of a sign problem in the simulations. This sign problem
comes from K admitting negative eigenvalues. For smaller couplings, some eigenvalues appear
to fluctuate more and more around zero. The sign problem seems to be milder in the 𝑂𝑆𝑝(5|2)
case, with the mean value of the sign approaching 1 for higher values of the coupling. We intend to
compute other observables, like the four-point functions and the conserved currents, and to study
the behavior of the sign problem in more detail [37].

In future work, we intend to explore algorithms that treat the fermions differently, hoping to
ameliorate the sign problem.
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