
P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson
Fermions with HiRep

Sofie Martins,𝑎,𝑏,∗ Erik Kjellgren,𝑎 Emiliano Molinaro,𝑎 Claudio Pica𝑎,𝑏 and
Antonio Rago𝑎,𝑏

𝑎University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
𝑏ℏQTC, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark

E-mail: martinss@imada.sdu.dk

We are improving one of the available lattice software packages HiRep by adding GPU acceleration
supporting highly-optimized simulations on both NVIDIA and AMD GPUs. HiRep allows lattice
simulations of theories with fermions in higher representations and a variable number of colors in the
gauge group. The development is accompanied by an overall software quality improvement in the
build system, testing, and documentation, adding features for both CPUs and GPUs. The software is
available under https://github.com/claudiopica/HiRep.

European network for Particle physics, Lattice field theory and Extreme computing (EuroPLEx2023)
11-15 September 2023
Berlin, Germany

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:martinss@imada.sdu.dk
https://pos.sissa.it/


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

1. Motivation

Predictions from models of physics beyond the standard model often depend on input from strongly
coupled gauge theories of variable numbers of colors and fermion representations. Simulations on the
lattice can quickly become computationally expensive. Using Wilson Fermions constitutes, to this day,
one of the cheapest options to explore theories with different gauge groups. In particular, the simulation
of theories with higher dimensional fermion representations at sufficient precision requires generally a
large amount of computational resources.

The lattice library HiRep allows simulations of higher representations of Wilson fermions with
general gauge groups. In the following we present results for the porting of the library to state-of-the-art
GPU accelerators. The software is available at

https://github.com/claudiopica/HiRep

2. Software Quality

We improved the quality assurance of the software by introducing automated unit tests, testing different
numbers of colors and fermion representations, MPI support, OpenMP support, GPU support, and
clover improvement. for each commit and code coverage reporting with codecov supplying the user
with detailed information about which lines of the code are tested. To ensure the extensibility of the
library, we generate documentation [6] including a user manual, developer handbook and Doxygen
function reference and improve code readability using a code formatting check.
For a fast and simple compilation for different gauge groups and fermion representations, we have
updated the build system to ninja-build [1], a lower-level build system that avoids large compilation
times. The library is largely independent of external modules or libraries, requiring gcc, perl and
ninja-build and optionally CUDA (GPU acceleration), MPI (parallelization) and hwloc (hardware
topology). Configuration of build setup and compilation variables is supplied over a build help text.
New benchmarking code has been developed for gaining quick information on the configuration of the
software on a new cluster or supercomputer.

2.1 Memory Access Patterns

Lattice simulations are usually bound by the speed of the memory access. While modern CPUs can
access memory with high flexibility, access patterns are crucial to optimal GPU performance. GPU
manufacturers cite here a peak value of global memory access, which can be reached by reading
memory block after block using sequential GPU threads. However, an ideal memory arrangement for
the GPU is not usually the most intuitive way to store lattice data.
For simulations on the CPU, it is sufficient to store memory site-by-site as in figure 1. However, this is
a problem for reading memory from the GPU because the kernels will only need to read the first
component or first real number of the site and then move on to the other components. Therefore, the
ideal memory access pattern is to store blocks of components as illustrated in figure 1. Instead of

2



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

CPU Memory +0 +1 +2 +3 . . .
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 . . .

GPU Memory 0 0 0 0 0 0 0 0 . . .
Figure 1: Comparison of memory access patterns in CPU and GPU simulations

components, we store the data in the smallest memory units we read, single real numbers of single or
double precision.

Unfortunately, this memory striding is incompatible with the legacy geometry of HiRep. In the legacy
geometry, we categorize sites of the local lattices into sites that, during the hopping term application,
do not depend on communications (bulk), sites depending on communications (boundary), and sites
that the boundary depends on (halo or receive buffers) and arrange the sites of the four-dimensional
lattice in such a way that the boundary and receive buffers are contiguous in memory. This way, we can
identify the contiguous memory region and pass it to MPI.

On a four-dimensional lattice, this is rarely trivially possible. The simplest solution to this problem is
to collect the sites that need to be sent over MPI into a separate send buffer, copying all sites on the
boundary of the inner lattice. The old geometry aims to minimize the number of copies by adding
duplicated sites in place and synchronizing them. Unfortunately, in combination with the striding on
the GPU, this is impossible because the striding breaks the buffers into non-contiguous pieces.

Due to this, we implemented the new geometry using a complete copy to a send buffer. This geometry
has only two categories of sites: bulk and receive buffers. Instead of waiting for communications
before we compute the sites on the boundary, we only mask the directions in the hopping term that can
only be executed after the communications are complete. This has the advantage that more time is
spent in the bulk computation, giving us more time to mask communications. Find illustrations in
figure 2, based on figures published in [6].

Receive Buffers

Boundary

Bulk

Figure 2: New geometry (left) and legacy geometry (right), illustrated on 2D lattices.

3



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

2.2 Send buffer synchronization

The new geometry has the disadvantage that the send and receive buffers are no longer contiguous.
Consequently, we need to synchronize the non-contiguous pieces of information to a contiguous send
buffer. This synchronization is slightly more complicated than the synchronization on the legacy
geometry; however, the execution times of both operations are negligible compared to the bulk
calculations of the Dirac operator applications on typical local lattice sizes.

MPI

Local lattice PID=0 Local lattice PID=1

Figure 3: Illustration of the send buffer synchronization in the new geometry

We are speeding up communications by partially applying the Dirac operator before the
synchronization to the send buffer. As a result, it is only necessary to send a half-spinor, cutting the
communication times substantially, see for example [7].

3. Features

3.1 Wilson-Dirac Operator

The GPU-ported version of HiRep supports a GPU-accelerated Wilson-Dirac operator in single and
double precision for general higher representations of SU(𝑁𝑐) for any number of colors. We are
supporting even-odd preconditioning, clover [17], exponentiated clover improvement [8], and the
Lüscher-Weisz gauge action [14]. Available are not only the HMC but also the RHMC [3, 13],
Hasenbusch acceleration [12] and a selection of integrators: Leapfrog, 2nd and 4th order Omelyan
integrators [16].

3.1.1 Strong and weak scaling

We observe almost ideal weak scaling on larger clusters, even for multi-node simulations. We show in
figure 4 the weak scaling of the smallest possible kernel: An SU(2) gauge group with fermions in the
fundamental representation. Both on LUMI-G and Tursa we see that the computations are masking the
communications for single and multi-node simulations.
The strong scaling in figure 5, however, is showing less ideal behavior. Both on Tursa and LUMI-G the
loss of efficiency is mainly caused by a strong dependence of the kernel execution time on the total
memory movement. In a region where the local lattices become small, the execution time is dominated
by the kernel call overheads and ideal scaling is not expected.

3.1.2 Large-𝑁𝑐 scaling

A crucial property of the library is the ability to use fermions in arbitrary higher representations. For
the CPU version the operation on the fields are site-wise operations. As a result the computational

4



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

Local lattice 32^4 48^4

AMD MI250x (LUMI−G)

2
1

8
1

32
4

1000

3000

10000

Number of GPUs
Number of nodes

T
im

e 
[µ

s]

NVIDIA A100−SXM4−40GB (Tursa)

1
1

2
1

4
1

8
2

16
4

1000

3000

10000

Number of GPUs
Number of nodes

T
im

e 
[µ

s]
Figure 4: Weak scaling of time spent on a single application of the Wilson-Dirac operator for an SU(2) gauge
group with fermions in the fundamental representation.

Global lattice 48^4 96x48^3

AMD MI250x (LUMI−G)

2
1

8
1

32
4

300

1000

3000

10000

30000

Number of GPUs
Number of nodes

T
im

e 
[µ

s]

NVIDIA A100−SXM4 (Tursa)

1
1

2
1

4
1

8
2

16
4

1000

3000

10000

Number of GPUs
Number of nodes

T
im

e 
[µ

s]

Figure 5: Strong scaling of time spent on a single application of the Wilson-Dirac operator for an SU(2) gauge
group with fermions in the fundamental representation.

throughput per thread or process is increasing with the square of the dimension of the fermion
representation 𝑁2

f , the amount of computations in the matrix multiplication of the represented gauge
field with the spinor vector components in the Dirac operator. Additionally, the amount of memory
each thread or process is reading increases, since the amount of data stored in a single spinor and a
single SU(𝑁f) matrix increases with ∼ 𝑁f and ∼ 𝑁2

f respectively.
While on the CPU we pay a performance penalty proportional to the additional computation and
memory, the performance on the GPU can degrade very quickly and become completely unfeasible due

5



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

to register spilling: In contrast to CPUs GPUs do not have an L3 cache and if too much memory is used
in the local thread, it ‘spills’ directly to global memory. Accessing global memory, however, is
substantially slower.
In order to allow scaling of the code to large fermion representations, we have to parallelize in the
fermion dimension. However, this parallelization is non-trivial due to the matrix multiplication.
Correspondingly, a large-𝑁f-improved kernel might not perform better than the naive implementation
for small representations such as the ones of QCD-like theories. For this, we implemented two versions
of this kernel, one is parallelized. It can be activated by changing the compilation variables, which is
implemented by passing macro definitions to the preprocessor. The macro LARGE_N switches to the
parallelized kernel. However, on some cards the non-parallelized kernel still performs better for
QCD-like theories. As a result, the default is the non-parallelized kernel.

50000

100000

150000

2 4 8 16 32
Nf

T
im

e 
[µ

s]

500

1000

1500

2000

2500

2 4 8 16 32
Nf

B
an

dw
id

th
 [G

B
/s

]

500

1000

1500

2 4 8 16 32
Nf

G
F

LO
P

S

Large−N improved kernel Standard kernel

Figure 6: Large-𝑁𝑐 scaling of performance metrics of applications of the Wilson-Dirac operator with an SU(𝑁𝑐)
gauge group and fermions in the fundamental representation.

Figure 6 shows the execution time, bandwidth, and computational throughput as a function of the
dimension of the fermion representation 𝑁f . To avoid effects due to different memory sizes, we scaled
the lattice size down when increasing 𝑁f to keep the total amount of memory moved constant. The
values given are interpolated since this was impossible due to geometric constraints.
The figures show a steep increase in execution time for the unimproved kernel for large gauge groups.
While the scaling in time for the improved kernel is not ideal, it is more stable. The computational
throughput of the kernel is largely constant. The drop in bandwidth can be explained by the fact that
the kernel becomes compute-bound for larger 𝑁f . Still, the peak theoretical occupancy is limited
because the kernel is not particularly lightweight and needs many registers. Consequently, the card is
exhausting its capabilities in terms of computation for all 𝑁f . This additionally causes a drop in the
effective bandwidth.

3.2 Linear Algebra

An efficient inversion of the Wilson-Dirac operator further depends on efficient linear algebra
operations, particularly for the spinors. The single and double-precision implementations of all fields

6



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

available in the library are easily extendable, simplify use, and reach 80-90% of the theoretical peak
performance on NVIDIA GPUs.

NVIDIA A100−PCIE−40GB NVIDIA H100 80GB HBM3 Tesla V100−SXM2−32GB

256 2048 16384 256 2048 16384 256 2048 16384

1000

2000

3000

Memory moved [MiB]

B
an

dw
id

th
 [G

B
/s

]

Operation
Copy spinor field

g5 application

g5 mulc add assign

Mul add assign

Spinor field product

Square norm

Figure 7: Bandwidths reached for linear algebra operations on different types of NVIDIA GPUs. Tested for an
SU(3) gauge group with fermions in the fundamental representation.

In Figure 7, we test the achieved bandwidth of selected linear algebra operations on a single device for
different NVIDIA GPUs. We find that approximately 90% of the peak performance is reached for
simple operations such as the identity operation (Copy spinor field) or a 𝛾5 application (g5 application)
for sufficiently high memory movement. We see that there is a dependence on the amount of data we
moved since the kernels have a call overhead and can only reach peak values if the GPUs have
sufficient work to do for this overhead to be small. More intensive operations such as a multiply-assign
with a complex number and application of 𝛾5 (g5 mulc add assign) are also saturating capabilities of
the device.
Another critical operation type are reductions, which map the field to a single number, such as inner
products and norms. These are implemented to take the site-wise product or norms and reduce the
result. Consequently, they consist of multiple kernels in sequence, each needing to read a substantial
amount of data. It is expected that these operations do not saturate the theoretical peak because it
accounts only for a first single read. However, the necessity of calling two kernels causes two stages
where global memory needs to be accessed.
While the site-wise operations are kernels that are part of the HiRep library, the reductions are
offloaded to cub, a library that has been part of the CUDA SDK since CUDA 11.

3.3 Inverters

HiRep supports the Conjugate Gradient, stabilized Bi-Conjugate Gradient [11, 19], and QMR𝛾5

inverters, which are ported to GPUs. In the future, we are planning to implement domain
decomposition methods, such as in [2, 9, 15] that reduce the amount of communications during the
inversion additionally, which can be useful for small local lattices and ill-conditioned operators.

7



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

3.4 HMC

Configuration generation with the HMC is supported for GPUs. The following algorithmic checks are
done following and checking consistency with [5] using an SU(2) gauge group with two fermions in the
adjoint representation, using two RHMC monomials at 𝛽 = 2.0 and 𝑚 = −1.34, both on an NVIDIA
V100 GPU (via UCloud DeiC Interactive HPC) and, in addition, for the HIP-ported version tested on
AMD MI250x GPUs (LUMI-G).

LUMI−G

step size: 0.04

LUMI−G

step size: 0.05

UCloud

step size: 0.04

LUMI−G

step size: 0.01

LUMI−G

step size: 0.02

LUMI−G

step size: 0.0294

1000 2000 0 1000 2000 0 200 400 600

0 250 750 1000 900 1200 1500
0.641

0.642

0.643

0.644

0.645

0.646

0.641

0.642

0.643

0.644

0.645

0.646

0.641

0.642

0.643

0.644

0.645

0.646

0.641

0.642

0.643

0.644

0.645

0.646

0.641

0.642

0.643

0.644

0.645

0.646

0.641

0.642

0.643

0.644

0.645

0.646

Trajectory Number

A
ve

ra
ge

 P
la

qu
et

te

Figure 8: Average plaquette of ensembles

System AMD MI250x (LUMI−G) Tesla V100−SXM2−32GB (via UCloud)

χ2 dof = 0.64χ2 dof = 0.64χ2 dof = 0.64χ2 dof = 0.64χ2 dof = 0.64χ2 dof = 0.640.6434

0.6436

0.6438

0.01 0.02 0.03 0.04 0.05
∆τ

〈P
〉

χ2 dof = 0.53χ2 dof = 0.53χ2 dof = 0.53χ2 dof = 0.53χ2 dof = 0.53χ2 dof = 0.530.98

1.00

1.02

0.01 0.02 0.03 0.04 0.05
∆τ

〈 e
xp

(−
∆ 

H
)〉

Figure 9: Check that the average plaquette value does not depend on the step size in the integrator (left). Check
that the simulations obey the Creutz equality (right).

8



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

The determined value of the average plaquette is independent of the step size in the molecular
dynamics integration. We further check the Creutz equality, see [4], stating that

⟨exp(−Δ𝐻)⟩ = 1 (1)

While we do see, as expected, larger uncertainties for larger step sizes, the ensembles show results
consistent with this equality.

System AMD MI250x (LUMI−G) Tesla V100−SXM2−32GB (via UCloud)

step size: 0.0294 step size: 0.04

step size: 0.01 step size: 0.02

−2 0 2 −2 0 2

−2 0 2 −2 0 2

−2
−1

0
1
2

−2
−1

0
1
2

−2
−1

0
1
2

−2
−1

0
1
2

Normal theoretical quantiles

D
at

a 
qu

an
til

es

step size: 0.0294 step size: 0.04

step size: 0.01 step size: 0.02

−0.8−0.4 0.0 0.4 0.8 −1 0 1

−0.050.00 0.05 −0.25 0.00 0.25
0

25
50
75

100

0
100
200
300

0
30
60
90

0

50

100

150

∆ H

C
ou

nt

Figure 10: Distribution of Hamiltonian violations for selected step sizes

We further examine the distribution of Hamiltonian violations of the HMC trajectories. For sufficiently
small step sizes, the distribution is normal, as expected, which is demonstrated both by the histograms
on the right as well as the quantile-quantile plots on the left, which show the values of Hamiltonian
violation on the y-axis and the expected quantile they should be located in if they were Gaussian on the
x-axis. A perfectly normal distributed data vector forms a straight line in these plots. The slope of this
line is the standard deviation of the data.
Lastly, we check that the Hamiltonian violations of the 2nd-order Omelyan integrator [16] are
increasing as

Δ𝐻 ∼ Δ𝜏4, (2)

see [18], by fitting. Additionally, we check the asymptotic analytical relation from [10]

𝑃acc � erfc

(√︂
⟨Δ𝐻⟩

2

)
(3)

between the acceptance rate and Hamiltonian violations. We find that the relations are fulfilled and that
the algorithm is working.

9



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

System AMD MI250x (LUMI−G) Tesla V100−SXM2−32GB (via UCloud)

χ2 dof = 0.76χ2 dof = 0.76χ2 dof = 0.76χ2 dof = 0.76χ2 dof = 0.76χ2 dof = 0.76

0.00

0.05

0.10

0.15

0.01 0.02 0.03 0.04 0.05
∆τ

<
∆H

>

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.05 0.10 0.15
< ∆H >

P a
cc

Figure 11: Check analytic behavior of acceptance rate (bottom) and scaling of the integrator with step size (top).

4. Conclusion and outlook

The ported code is efficient and scales well. Substantial improvements in overall software quality have
been made. While configuration generation with the HMC is efficient, performance improvements can
still be achieved using domain decomposition methods, as they minimize the need for communications.

5. Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation
program under the Marie Skłodowska-Curie grant agreement №813942. Testing, development, and
benchmarking of this software was possible using resources on LUMI-G provided by the Danish
eInfrastructure Consortium under grant application number DeiC-SDU-N5-2024055 and NVIDIA
V100, A100, and H100 nodes provided by the UCloud DeiC Interactive HPC system managed by the
eScience Center at the University of Southern Denmark. We are grateful to Jacob Finkenrath and
Martin Hansen for valuable discussions.

References

[1] The ninja build system. https://ninja-build.org/, 2013–2024.

10

https://ninja-build.org/


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

[2] R. Babich, J. Brannick, R. C. Brower, M. A. Clark, T. A. Manteuffel, S. F. McCormick, J. C.
Osborn, and C. Rebbi. Adaptive multigrid algorithm for the lattice Wilson-Dirac operator. Phys.
Rev. Lett., 105:201602, 2010.

[3] M. A. Clark and A. D. Kennedy. The RHMC algorithm for two flavors of dynamical staggered
fermions. Nucl. Phys. B Proc. Suppl., 129:850–852, 2004.

[4] Michael Creutz. Global monte carlo algorithms for many-fermion systems. Phys. Rev. D,
38:1228–1238, Aug 1988.

[5] Luigi Del Debbio, Agostino Patella, and Claudio Pica. Higher representations on the lattice:
Numerical simulations. SU(2) with adjoint fermions. Phys. Rev. D, 81:094503, 2010.

[6] Claudio Pica et. al. Documentation of hirep. https://claudiopica.github.io/HiRep/.

[7] Martin Lüscher et. al. Openqcd. https://luscher.web.cern.ch/luscher/openQCD/.

[8] Anthony Francis, Patrick Fritzsch, Martin Lüscher, and Antonio Rago. Master-field simulations
of O(𝑎)-improved lattice QCD: Algorithms, stability and exactness. Comput. Phys. Commun.,
255:107355, 2020.

[9] Andreas Frommer, Karsten Kahl, Stefan Krieg, Björn Leder, and Matthias Rottmann. Adaptive
Aggregation-Based Domain Decomposition Multigrid for the Lattice Wilson–Dirac Operator.
SIAM J. Sci. Comput., 36(4):A1581–A1608, 2014.

[10] Sourendu Gupta, A. Irback, F. Karsch, and B. Petersson. The Acceptance Probability in the
Hybrid Monte Carlo Method. Phys. Lett. B, 242:437–443, 1990.

[11] Martin H. Gutknecht. Variants of bicgstab for matrices with complex spectrum. SIAM Journal on
Scientific Computing, 14(5):1020–1033, 1993.

[12] Martin Hasenbusch. Speeding up the hybrid Monte Carlo algorithm for dynamical fermions.
Phys. Lett. B, 519:177–182, 2001.

[13] A. D. Kennedy, Ivan Horvath, and Stefan Sint. A New exact method for dynamical fermion
computations with nonlocal actions. Nucl. Phys. B Proc. Suppl., 73:834–836, 1999.

[14] M. Luscher and P. Weisz. On-shell improved lattice gauge theories. Commun. Math. Phys.,
98(3):433, 1985. [Erratum: Commun.Math.Phys. 98, 433 (1985)].

[15] Martin Luscher. Solution of the Dirac equation in lattice QCD using a domain decomposition
method. Comput. Phys. Commun., 156:209–220, 2004.

[16] I.P. Omelyan, I.M. Mryglod, and R. Folk. Symplectic analytically integrable decomposition
algorithms: classification, derivation, and application to molecular dynamics, quantum and
celestial mechanics simulations. Computer Physics Communications, 151(3):272–314, 2003.

11

https://claudiopica.github.io/HiRep/
https://luscher.web.cern.ch/luscher/openQCD/


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
5

GPU-accelerated Higher Representations of Wilson Fermions with HiRep Sofie Martins

[17] B. Sheikholeslami and R. Wohlert. Improved Continuum Limit Lattice Action for QCD with
Wilson Fermions. Nucl. Phys. B, 259:572, 1985.

[18] Tetsuya Takaishi. Choice of integrator in the hybrid monte carlo algorithm. Computer Physics
Communications, 133(1):6–17, 2000.

[19] H. A. van der Vorst. Bi-cgstab: A fast and smoothly converging variant of bi-cg for the solution
of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing,
13(2):631–644, 1992.

12


	Motivation
	Software Quality
	Memory Access Patterns
	Send buffer synchronization

	Features
	Wilson-Dirac Operator
	Linear Algebra
	Inverters
	HMC

	Conclusion and outlook
	Acknowledgements

