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In this talk we discuss a novel method, that we have presented in Ref. [1], to extract hadronic spectral
densities from lattice correlators by using deep learning techniques. Hadronic spectral densities play a
crucial role in the study of the phenomenology of strong-interacting particles and the problem of their
extraction from Euclidean lattice correlators has already been approached in the literature by using machine
learning techniques. A distinctive feature of our method is a model-independent training strategy that we
implement by parametrizing the training sets over a functional space spanned by Chebyshev polynomials.
The other distinctive feature is a reliable estimate of the systematic uncertainties that we obtain by introducing
an ensemble of machines in order to study numerically the asymptotic limits of infinitely large networks and
training sets. The method is validated on a very large set of random mock data and also in the case of lattice
QCD data.
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1. Introduction

The problem of the extraction of hadronic spectral densities from Euclidean correlators, computed from
numerical lattice QCD simulations, has attracted a lot of attention over the years (see Refs. [2–25]). Indeed,
from the knowledge of these key objects it is possible to extract all the information needed to study the
scattering of hadrons and, more generally, their interactions. The problem of the extraction of spectral
densities from lattice correlators is equivalent to that of an inverse Laplace-transform operation and, when
dealing with a discrete and finite set of noisy input data, it is numerically ill-posed. Moreover, in the case
of lattice field theory correlators further complications arise as lattice simulations have necessarily to be
performed on finite volumes where the spectral densities are badly-behaving distributions. A regularization
procedure is therefore mandatory and this can be conveniently achieved by targeting the numerical calculation
of smeared spectral densities.

In Ref. [1] we have recently presented a newmethod for the extraction of smeared spectral densities from
lattice correlators that is based on a supervised deep-learning approach. In order to develop an approach
that can be used to obtain trustworthy theoretical predictions we have to address the following two pivotal
questions

1. is it possible to devise a model independent training strategy?

2. if such a strategy is found, is it then possible to quantify reliably, together with the statistical errors,
also the unavoidable systematic uncertainties?

The importance of the first question can hardly be underestimated. Under the working assumption,
supported by the so-called universal reconstruction theorems (see Refs. [26–28]), that a sufficiently large
neural network can perform any task, limiting either the size of the network or the information to which it is
exposed during the training process means, in fact, limiting its ability to solve the problem in full generality.
Addressing the second question makes the difference between providing a possibly efficient but qualitative
solution to the problem and providing a scientific numerical tool to be used in order to derive theoretical
predictions for phenomenological analyses.

2. Outline of the strategy and numerical setup

The method that we have proposed in Ref. [1] (see FIG. 1) is built on two pillars

1. the introduction of a functional-basis to parametrize the correlators and the smeared spectral densities
of the training sets in a model independent way;

2. the introduction of the ensemble of machines to estimate the systematic errors.

In order to validate the method we consider both mock and real lattice QCD data and choose the algorithmic
parameters in order to be able to extract the hadronic spectral density from the lattice QCD correlator Ilatt,
associated with the so-called R-ratio, calculated on the B64 ensemble generated by the ETMC (see TABLE I
in Ref. [29] and Ref. [30, 31]). We then generate the needed mock data by starting from a model unsmeared
spectral density d(�) and by computing the associated correlator according to

� (C) =
∫ ∞

�0

dl
l2

12c2

[
4−Cl + 4−() −C)l

]
d(l) , (1)

with ) = 640 and 0 = 0.07957 fm, and the associated smeared spectral density according to

d̂f (�) =
∫ ∞

�0

dl f (�, l)d(l) . (2)
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Figure 1: Top-left: By introducing a discrete functional-basis, with elements �= (�), that is dense in the space of
square-integrable functions 5 (�) in the interval [�0,∞) with �0 > 0, any such function can exactly be represented as
5 (�) = ∑∞

==0 2=�= (�). With an infinite number of basis functions (#b = ∞) and by randomly selecting an infinite
number (#d = ∞) of coefficient vectors c = (20, · · · , 2#b ), one can get any possible spectral density. This is the
situation represented by the filled blue disk. If the number of basis functions #b and the number of randomly extracted
spectral densities #d are both finite one has a training set that is finite and that also depends on #b. This is the situation
represented in the first disk on the left. The other two disks schematically represent the situations in which either #b
or #d is infinite. Bottom-left: We generate several training sets Tf (#b, #d) built by considering randomly chosen
spectral densities. These are obtained by choosing #d random coefficients vectors with #b entries. For each spectral
density d(�) we build the associated correlator � (C) and smeared spectral density d̂f (�), where f is the smearing
parameter. We then distort the correlator � (C), by using the information provided by the statistical variance of the lattice
correlator, and obtain the input-output pair (�noisy (C), d̂f (�)) that we add to Tf (#b, #d). We then implement different
neural networks with #n neurons and at fixed T = (#n, #b, #d) we introduce an ensemble of machines with #r replicas.
Each machine A = 1, · · · , #r belonging to the ensemble has the same architecture and, before the training, differs from
the other replicas for the initialization parameters. All the replicas are then trained over Tf (#b, #d) and, at the end
of the training process, each replica will give a different answer depending upon T. Right: Flowchart illustrating the
procedure that we use to extract the final result. Here � (C) represents the input lattice correlator that, coming from a
Monte Carlo simulation, is affected by statistical noise. We call �2 (C) the 2-th bootstrap sample (or jackknife bin) of the
lattice correlator with 2 = 1, · · · , #c. In the first step, �2 (C) is fed to all the trained neural networks belonging to the
ensemble at fixed # and the corresponding answers d̂pred

f (�, T, 2, A) are collected. In the second step, by combining
in quadrature the widths of the distributions of the answers as a function of the index 2 (Δlatt

f (�, T)) and of the index A
(Δnet
f (�, T)) we estimate the error Δstat

f (�, T)) at fixed T. At the end of this step we are left with a collection of results
d̂

pred
f (�, T) ±Δstat

f (�, T). In the third and last step, the limits T ↦→ ∞ are studied numerically and an unbiased estimate
of d̂pred

f (�) and of its error Δtot
f (�), with the latter also taking into account the unavoidable systematics associated with

these limits, is finally obtained.

We focus on a Gaussian smearing kernel,  f (�, l) = 4
− (�−l)

2

2f2 /
√

2cf2, but any other kernel can easily
be implemented within the proposed strategy. Among the many computational paradigms available within
the machine-learning framework, we opt for the most direct one and represent both the correlator and the
smeared spectral density as finite dimensional vectors, that we use respectively as input and output of our
neural networks. More precisely, the dimension of the input correlator vector is fixed to #) = 64, coinciding
with the available number of Euclidean lattice times in the case of Ilatt. The inputs of the neural networks
are thus the 64-components vectors I = {� (0), � (20), · · · , � (640)}. The output vectors are instead given
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by 1̂2 = { d̂f (�min), · · · , d̂f (�max)}. As in Ref. [29], we choose to measure energies in units of the muon
mass, <` = 0.10566 GeV, and set �min = <` and �max = 24<`. The interval [�min, �max] is discretized
in steps of size <`/2. With these choices our output smeared spectral densities are the vectors 1̂2 with
#� = 47 elements corresponding to energies ranging from about 100 MeV to 2.5 GeV.

We treat f, the width of the smearing Gaussian, as a fixed parameter by including in the corresponding
training sets only spectral functions that are smeared with the chosen value of f. We consider two different
values, f = 0.44 GeV and f = 0.63 GeV, that correspond respectively to the smallest and largest values used
in Ref. [29].

3. Model independent training set

In the supervised deep-learning framework a neural network is trained over a training set which is
representative of the problem that has to be solved. In our case the inputs to each neural network are
the correlators I and the target outputs are the associated smeared spectral densities 1̂2 . As discussed in
the introduction, our main goal is that of devising a model-independent training strategy. To this end, the
challenge is that of building a training set which contains enough variability so that, once trained, the network
is able to provide the answer, correct within the quoted errors, for any possible input correlator. In order to
face this challenge we use the algorithmic strategy described in FIG. 1. In our strategy

• the fact that the network cannot be infinitely large is parametrized by the fact that #n (the number of
neurons) is finite;

• the fact that during the training a network cannot be exposed to any possible spectral density is
parametrized by the fact that #b (the number of basis functions) and #d (the number of spectral
densities to which a network is exposed during the training) are finite;

• the fact that at fixed

T = (#n, #b, #d) (3)

the answer of a network cannot be exact, and therefore has to be associated with an error, is taken into
account by introducing an ensemble of machines, with #r replicas, and by estimating this error by
studying the distribution of the different #r answers in the #r ↦→ ∞ limit;

• once the network (and statistical) errors at fixed T are given, we can study numerically the T ↦→ ∞
limits and also quantify, reliably, the additional systematic errors associated with these unavoidable
extrapolations.

For our numerical study we use the Chebyshev polynomials of the first kind as basis functions and generate
the unsmeared spectral densities that we use to build our training sets according to

d(� ; #b) = \ (� − �0)
#b∑
==0

2= [)= (G(�)) − )= (G(�0))] , (4)

where G(�) = 1 − 24−� maps the energy domain � ∈ [�0,∞) into [−1, +1] in which the Chebyshev
polynomials are naturally defined. The subtraction of the constant term )= (G(�0)) is introduced in order to
include a threshold �0 below which the spectral density is vanishing. Each d(� ; #b) that we use to populate
the training sets is obtained by choosing �0 randomly in the interval [0.2, 1.3] GeV and by inserting in Eq. (4)
the coefficients

20 = A0 ; 2= =
A=

=1+Y , = > 0 , (5)
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Type Maps Size Kernel size Stride Activation
Input 64
Conv1D 2 32x2 3 2 LeakyReLu
Conv1D 4 16x4 3 2 LeakyReLu
Conv1D 8 8x8 3 2 LeakyReLu
Flatten 384
Fully conn. 256 LeakyReLu
Fully conn. 256 LeakyReLu
Output 47
Parameters 94651

Table 1: arcS: the smallest neural network architecture used in Ref. [25]. The architecture is of the type feed-forward
and the structure can be read from top to bottom of the table. It consist of three 1D convolutional layers with an increasing
number of maps followed by two fully connected layers. The column denoted by ’Size’ reports the shape of the signal
produced by the corresponding layer. The stride of the filters is set to 2 in such a way that the dimension of the signal
is halved at each 1D convolutional layer thus favouring the neural network to learn a more abstract, and possibly more
effective, representation of the input data. The output layer has no activation function in order not to limit the output
range.

where the A=’s are #b uniformly distributed random numbers in the interval [−1, 1] and Y is a non-negative
parameter that we set to 10−7. Notice that with this choice of the coefficients 2= the Chebyshev series of
Eq. (4) is convergent in the #b ↦→ ∞ limit and that the resulting spectral densities can be negative. Once
�0 and the coefficients 2= that define d(� ; #b) are given, the correlator and the smeared spectral density
associated with d(� ; #b) can be calculated by using Eq. (1) and Eq. (2) and form the pair (I, 1̂2). We
generated #d of such pairs and populated the training set at fixed #b and f, Tf (#b, #d), with the pair
(Inoisy, 1̂2). Inoisy is a random vector correlator extracted from the multivariate Gaussian distribution

G

[
I,

(
� (0)
�latt (0)

)2
Σ̂latt

]
. (6)

Σ̂latt is the covariance matrix of the lattice correlator Ilatt mentioned above. The inclusion that mimics that
of true lattice QCD correlators in the training set is crucial in order to teach the networks to distinguish the
physical content of the input data from noisy fluctuations during the training. In order to be able to perform
a numerical study of the limits T ↦→ ∞, we generated with the procedure just described several training
sets, corresponding to #b = {16, 32, 128, 512} and #d = {50, 100, 200, 400, 800} × 103. The inputs of each
training set are standardized (that is the correlators a rescaled in such a way that the average is 0 and the
variance is 1 through the entire training set) before the training.

4. Training setup and ensemble of machines

From the machine-learning point of view, we needed to implement neural networks to solve a R#) ↦→
R#� regression problem with #) = 64 and #� = 47. For our analysis, we used feed-forward convolutional
neural networks based on the LeNet architecture introduced in Ref. [32]. We studied in details the dependence
of the output of the neural networks upon their size #n and, to this end, we implemented three architectures
that we called arcS, arcM and arcL. The architecture arcS is described in full details in TABLE 1. arcM and
arcL differ only for an increasing number of maps in the convolutional layers for a total number of trainable
parameters corresponding to 180871 and 371311.
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number of maps followed by two fully connected layers. The column denoted by ’Size’ reports the shape of the signal
produced by the corresponding layer. The stride of the filters is set to 2 in such a way that the dimension of the signal
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where the A=’s are #b uniformly distributed random numbers in the interval [−1, 1] and Y is a non-negative
parameter that we set to 10−7. Notice that with this choice of the coefficients 2= the Chebyshev series of
Eq. (4) is convergent in the #b ↦→ ∞ limit and that the resulting spectral densities can be negative. Once �0
and the coefficients 2= that define d(� ; #b) are given, the correlator I and the smeared spectral density 1̂2
associated with d(� ; #b) can be calculated by using Eq. (1) and Eq. (2). We generate #d pairs (I, 1̂2) and
populate the training sets at fixed #b and f, Tf (#b, #d), with the pairs (Inoisy, 1̂2) where Inoisy are random
correlators extracted from the multivariate Gaussian distribution

G

[
I,

(
� (0)
�latt (0)

)2
Σ̂latt

]
, (6)

with center I and covariance Σ̂latt, the covariance matrix of the lattice correlator Ilatt mentioned above.
In order to be able to perform a numerical study of the limits T ↦→ ∞, we generate with the procedure just

described several training sets, corresponding to #b = {16, 32, 128, 512} and #d = {50, 100, 200, 400, 800}×
103.

4. Training setup and ensemble of machines

From the machine-learning point of view, we need to implement neural networks to solve a R#) ↦→ R#�
regression problem with #) = 64 and #� = 47. For our analysis, we use feed-forward convolutional neural
networks based on the LeNet architecture introduced in Ref. [32]. We study in details the dependence of the
output of the neural networks upon their size #n and, to this end, we implement three architectures that we
call arcS, arcM and arcL. The architecture arcS is described in full details in TABLE 1. arcM and arcL differ
only for an increasing number of maps in the convolutional layers for a total number of trainable parameters
corresponding to 180871 and 371311.

We train each machine with #n neurons over the training set Tf (#b, #d) by minimizing as loss function
the Mean Absolute Error (MAE)

ℓ(w) = 1
#d

#d∑
8=1

���1̂pred,8
f (w) − 1̂8f

��� , (7)

where 1̂
pred,8
f (w) is the output of the neural network in correspondence of the input correlator I8noisy. We

implement a Mini-Batch Gradient Descent algorithm, with Batch Size (BS) set to 32, by using the Adam
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Figure 2: Left: Normalized density distribution of the significance defined in Eq. (9) as a function of the energy. The
distribution is calculated over 2000 validation samples generated according to Eq. (8). Aside, the cumulative histogram
of ?f (�) and related fractions of values that fall within 1, 2 or 3 standard deviations. Right: The results obtained with
our ensembles of neural networks in the case of a real lattice QCD correlator are compared with those obtained with the
HLT method (grey, Ref. [9, 29]) for the two values of f.

optimizer [33] combinedwith a decaying learning rate. We adopt the standard early stop criterion to terminate
the training by monitoring the validation loss (20% of #d). As already stressed, at fixed T the answer of
a neural network cannot be exact. In order to be able to study numerically the T ↦→ ∞ limits, the error
associated with the limited abilities of the networks at finite T has to be quantified. To do this we introduce
the ensemble of machines by considering, at fixed T, #r = 20 machines with the same architecture. Each
machine of the ensemble is trained by using a training set Tf (#b, #d) obtained by starting from the same
unsmeared spectral densities but with different noisy input correlators Inoisy.

5. Validation and application

Once the ensemble of trained machines has been built, the procedure sketched in FIG. 1 and illustrated
in much more detail in Ref. [1], is used to predict the smeared spectral density for any new correlator. In
order to perform a stringent validation test of the proposed method we consider unsmeared spectral densities
not belonging to the space spanned by the Chebyshev basis but generated according to

d(�) =
#peaks∑
==1

2=X(� − �=). (8)

By plugging Eq. (8) into Eq. (1) and Eq. (2) we calculate the correlator and smeared spectral density associated
to each unsmeared d(�). We generate 2000 such unsmeared spectral densities by randomly generating 2=
and �=. The trains of isolated Dirac-delta peaks are representative of unsmeared spectral densities that
might arise in the study of finite volume lattice correlators and therefore represent a particularly challenging
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benchmarking set to validate the procedure. The left panel of FIG 2 shows the pull variable

?f (�) =
d̂

pred
f (�) − d̂true

f (�)
Δtot
f (�)

, (9)

which is a quantitative estimate for the deviation of the predicted result from the true one within the total
quoted error. Δtot

f (�) includes both statistical and systematic errors combined in quadrature. As it can be
seen, the final results are consistent with the true ones at the level of one standard deviation in about 80%
of the cases and below three standard deviations in more than 99%. This is a reassuring evidence of the
ability of our ensembles of neural networks to generalize very efficiently outside the training set and, more
importantly, on the robustness of the procedure that we use to estimate the errors.

As application to real lattice QCD, we consider a lattice correlator, measured by the ETMC, that has
already been used in Ref. [29] to extract the so-called strange-strange connected contribution to the smeared
'-ratio by using the HLTmethod of Ref. [9]. The right panel of FIG. 2 shows the comparison of '̂pred

f (�) and
'̂HLT
f (�). The agreement between the two determinations is remarkably good over all the energy range. We

stress that neither the new method proposed in Ref. [1] nor the HLT algorithm assume any prior information
to predict the spectral density. The results presented in FIG. 2 are then unbiased determinations from first
principles obtained from two completely different methods.

6. Conclusions

In Ref. [1] we have proposed a new method to extract smeared hadronic spectral densities from lattice
correlators. The method is based on supervised deep-learning and the distinctive features are the imple-
mentation of a model-independent training strategy and a reliable estimation of the systematics achieved by
building an ensemble of trained machines. We validate the method on a large set of mock data by measuring
the failure rate of the ensemble of machines at the end of the procedure. In addition we consider a true
lattice QCD correlator obtained from a simulation performed by the ETM Collaboration. We extract the
strange-strange connected contribution to the smeared '-ratio and compare the predictions obtained by using
our ensembles of trained machines with the ones previously obtained by using the HLT method [9, 29]. The
two determinations, obtained by using the two totally unrelated methods, show a remarkably good agreement
and a similar precision.

The proposed method may be admittedly computationally demanding. However, on the basis of our
experience, we are firmly convinced that a careful study of the different sources of systematic uncertainties
is mandatory when dealing with machine-learning if the goal is to compare theoretical predictions with
experiments. In fact, the computational cost of the proposed method is the price that we have to pay for
the reliability of the results. On the other end, our strategy, devised in the specific case of the extraction of
spectral densities, can be fruitfully generalized to other applications and research fields.
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