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1. Introduction

The Hubbard model named after John Hubbard originates from solid state physics. It is
particularly well known for its ability to describe the transition from conducting to insulating
metals. It describes a physical system as a spatial lattice with particles occupying the sites. These
particles can hop from one site to another, which is described by a kinetic term and usually restricted
to neighboring sites. Multiple particles sharing the same site interact with each other via a localized
potential that can be repulsive or attractive. Since the system is fermionic the Pauli exclusion
principle holds. Optionally a chemical potential can be added to influence the number of charged
particles within the system. Here we only look at the fermionic Hubbard model with repelling
potential which describes electrons on a lattice of ions

𝐻 = −
∑︁
𝑥,𝑦

𝜅𝑥,𝑦

(
𝑎
†
𝑥↑𝑎𝑦↑ + 𝑎

†
𝑥↓𝑎𝑦↓

)
− 𝑈

2

∑︁
𝑥

(
𝑛𝑥↑ − 𝑛𝑥↓

)2 − 𝜇
∑︁
𝑥

(𝑛𝑥↑ + 𝑛𝑥↓) . (1)

Here 𝜅 is the hopping matrix describing the hopping amplitudes, 𝑈 is the interaction potential and
𝜇 the chemical potential [4]. By applying a Hubbard-Stratonovich transformation on Equation 1
we can formulate an action with continuous auxiliary fields 𝜙,

𝑆 =
∑︁
𝑥,𝑡

𝜙2
𝑥,𝑡

2�̃�
− log det(𝑀 [𝜙, 𝜅, �̃�]𝑀 [−𝜙,−𝜅,−�̃�]) ∈ C (2)

which allow lattice field calculations [8]. A tilde indicates parameters in lattice units, e.g. �̃� = 𝑈𝛿

where 𝛿 = 𝛽/𝑁𝑡 is the lattice spacing. The fermionic properties are encoded in the fermion matrices
𝑀 , one for spin up and one for spin down (or equivalently, one for particles and one for holes). At
non-zero 𝜇 there is no ergodicity problem with the exponential discretization that we use [11].

The term involving these matrices in Equation 2 can be complex for non-zero chemical potential
or non-bipartite lattices. This property makes the Hubbard model susceptible to the sign problem
that diminishes the convergence of Markov chain Monte Carlo calculations, making estimates of
observables, 〈

�̂�
〉
=

1
Z

∫
D𝜙 �̂� [𝜙] 𝑒−𝑆 [𝜙𝑛 ] ≈ 1

𝑁

𝑁∑︁
𝑛=0

�̂� [𝜙𝑛] , (3)

difficult, if not impossible, to obtain. Reweighting is thus required to handle the otherwise complex
probability distribution 𝑒−𝑆 [𝜙𝑛 ]/Z appearing in every expectation value,〈

�̂�
〉
=

〈
�̂�𝑒−i𝑆𝐼

〉
𝑅〈

𝑒−i𝑆𝐼
〉
𝑅

≈
∑𝑁

𝑛=0 �̂� [𝜙𝑛] 𝑒−i𝑆𝐼 [𝜙𝑛 ]∑𝑁
𝑛=0 𝑒

−i𝑆𝐼 [𝜙𝑛 ]
. (4)

While including the imaginary phase in the observable and sampling according to the real part of
the action is theoretically exact, the statistical convergence is exponentially slowed down by the
average phase in the denominator of Equation 4 due to large phase oscillations. We call the absolute
value of this phase,

Σ ≡
��〈𝑒−i𝑆𝐼

〉
𝑅

�� , (5)

the statistical power and use it to quantify the sign problem. A sign problem-free calculation has
Σ = 1, whereas the worst sign problem occurs when Σ ∼ 0.
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Note that for this expectation value the real part of the action is used for the probability
distribution, which is a non-holomorphic function. This means that its value depends on the chosen
contour while the physical observables do not. Contour deformation according to Cauchy’s theorem
is one of many approaches to relieve the sign problem. We have observed that simple shifts into
the complex space can greatly impact the sign problem. It does not have the same capabilities
as more intricate transformations such as neural networks, but is simple to apply, does not affect
the Hybrid Monte Carlo (HMC) and requires no Jacobian determinant which might blow up the
volume scaling [6, 9, 10]. For these reasons we investigate the limits of constant imaginary shifts
and develop methods for choosing one.

2. Advanced Offsets

When talking about an offset we are referring to an imaginary constant that is added to all
components of the initially real auxiliary field 𝜙 → 𝜙 + 𝑖𝜙𝑐. The most basic, but also most reliable
of those offsets occurs at the tangent plane. As the name suggests, it is the plane that is tangent
to the critical point of the main Lefschetz thimble [1]. It is found by following holomorphic flow
equations starting from 𝜙 = 0 or solving the transcendental equation Equation 6, which we derived
for the Hubbard model in [3], at finite imaginary time discretisation 𝛿 = 𝛽/𝑁𝑡 ,

𝜙0/𝛿 = − 𝑈

𝑁𝑥

∑︁
𝑘

tanh
(
𝛽

2
[𝜖𝑘 + 𝜇 + 𝜙0/𝛿]

)
. (6)

From this equation we see that the tangent plane scales inversely with the number of time steps 𝑁𝑡

and is restricted to the range [−�̃�, +�̃�] converging to its boundaries in the limit of 𝜇 → ±∞. We find
the tangent plane consistently has a milder sign problem than the unmodified real plane calculation.
Furthermore we proved that the sign problem vanishes on the tangent plane for 𝜇𝛽 → ±∞ when 𝜇

is beyond a certain value.
The tangent plane is already known in the lattice community, but varying the offset quickly

reveals that even greater improvements can be achieved. The next step is a next to leading order
correction (NLO) that takes into account thermal fluctuations in the field 𝜙. For this we expand the
action around the main critical point and formulate an effective action Equation 7 [3]

𝑆eff [𝜙1] = 𝑆[𝜙1] +
1
2

log detH𝑆 [𝜙1 ] (7)

which can be minimized to find 𝜙1. This offset leads to a further reduction in the sign problem most
of the time.

A further reduction in the sign problem cannot rely on (quasi-)analytical methods alone and
requires numerical iterative calculations. Fortunately the derivatives of the statistical power can be
easily computed from an existing Markov chain. The derivatives derived in our paper are correct,
but [2] provides a more elegant solution excluding terms that vanish analytically.

d
d𝜙0

〈
𝑒−𝑖𝑆𝐼,𝜙0

〉
𝑅,𝜙0

=
〈
𝑒−𝑖𝑆𝐼,𝜙0

〉
𝑅,𝜙0

〈d𝑆𝑅,𝜙0

d𝜙0

〉
𝑅,𝜙0

(8)

d2

d𝜙0
2

〈
𝑒−𝑖𝑆𝐼,𝜙0

〉
𝑅,𝜙0

=
〈
𝑒−𝑖𝑆𝐼,𝜙0

〉
𝑅,𝜙0

©«2
〈d𝑆𝑅,𝜙0

d𝜙0

〉2

𝑅,𝜙0

+
〈

d2𝑆𝑅,𝜙0

d𝜙0
2 −

d𝑆𝑅,𝜙0

d𝜙0

2
〉
𝑅,𝜙0

ª®¬ (9)
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Figure 1: Statistical power with Taylor expansion to second order depending on imaginary offset 𝜙𝐼 . This
is the 𝐶20 fullerene with 𝑁𝑡 = 16, 𝛽 = 6, 𝑈 = 2 and 𝜇 = 1. The vertical lines mark the named offsets in this
example.

With those and a reasonable initial guess from NLO or tangent plane, this optimal offset that
maximizes the statistical power can be approached iteratively. To estimate this optimized plane we
simultaneously fit a Gaussian and its first two derivatives to Equation 5, Equation 8 and Equation 9
for all previously measured offsets. We have no formal proof for the statistical power forming a
Gaussian around one offset, but judging from our observations it is a sufficiently accurate model
for this optimization. This method converges more reliably and slightly quicker than the Newton-
Rhapson routine we describe in [3]. Figure 1 illustrates the statistical power with derivatives for a
range of offsets showing a clear peak structure motivating this research. The difference in statistical
power between the marked offsets emphasizes the importance of the chosen contour. As the effective
number of configurations scales with Σ2 these offsets are orders of magnitude apart when it comes
stochastic uncertainty.

3. Results

In this section we apply the developed techniques to a tetrahedron, 𝐶20, 𝐶60 and a 72-site
honeycomb lattice. The tetrahedron is small enough for exact diagonalization, allowing us to
compare our stochastic algorithm analytic results.

First, the introduced offsets are quantitatively compared with each other. Figure 2 shows side
by side the chosen shift at each 𝜇 and the resulting statistical power. It confirms our previous
statement about the sign problem vanishing for 𝜇 → ∞. But in the interesting range we see that
the improvement is greatly dependent on the parameters. At some 𝜇 the tangent plane is already
the best we can find, at other 𝜇 the optimized plane surpasses it by magnitudes. The sign problem
also gets worse for increasing𝑈 and 𝛽, for more information we refer to [3]. The sign problem also
scales with volume, to compensate this effect we calculate larger lattices at smaller 𝛽 [7].
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Figure 2: Comparing the introduced offsets and their corresponding average phase for the tetrahedron with
𝑁𝑡 = 16, 𝛽 = 8, 𝑈 = 2.
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Figure 3: Observables of tetrahedron with 𝛽 = 8, 𝑈 = 2. Left: single particle correlator 𝐶𝑘 (𝜏) at 𝜇 = 1.
Right: charge 𝑄.

Furthermore, we show exemplary observables to highlight the quality difference that the
choice of contour can cause even in this most basic form. The first observable is the single particle 1

correlation function given by Equation 10. It can be used to extract the low lying spectrum relative
to the ground state, because at large 𝛽 the smallest transition energies will dominate the slope at
𝜏 → 0 or 𝜏 → 𝛽:

𝐶𝑘 (𝜏) =
〈
𝑎𝑘 (𝜏)𝑎

†
𝑘
(0)

〉
=
∑︁
𝑎,𝑏

���⟨Ψ𝑎 | 𝑎†𝑘 |Ψ𝑏⟩
���2𝑒−𝜏 (𝐸𝑏−𝐸𝑎 )𝑒−𝛽𝐸𝑎 (10)

The k-index labels the momenta rather the positions on the spatial lattice. For more details con-
sider [5]. The systems we work with have degenerate energy states. We average the corresponding
correlation functions and show in our figures only the resulting selection of unique momenta.

The second observable is the total charge expectation value Equation 11 which is an experi-
mentally measurable quantity, depending on the chemical potential 𝜇,

⟨𝑄⟩ =
〈∑︁

𝑥

𝑞𝑥

〉
= 𝑁𝑥 − 2

∑︁
𝑘

𝐶𝑘 (𝜏 = 0) . (11)

1Here we use the Hubbard model in particle-hole basis where a particle are annihilated with 𝑎𝑥 = 𝑎𝑥,↑ and holes
with 𝑏𝑥 = 𝑎

†
𝑥,↓. The creation operators are similar.
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Figure 4: Observables as in fig. 3 for 𝐶20 with 𝛽 = 6, 𝑈 = 2 and 𝜇 = 1.
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Figure 5: Observables as in fig. 3 for 𝐶60 with 𝛽 = 6, 𝑈 = 2 and 𝜇 = 1.
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Figure 6: Observables as in fig. 3 for 72-site honeycomb lattice (6 × 6 unit cells) with 𝛽 = 4, 𝑈 = 2 and
𝜇 = 1.

Comparing these charge expectation values with the ones from [3] shows that the afore mentioned
Gaussian fits improved the stability of our optimization routine in areas where the sign problem is
especially strong.

Energy Fits

It is clear from Equation 10 that the ground state has the greatest contribution, especially at
large 𝛽. We fit an exponential to each correlation function shown in figures 3, 4, 5 and 6 to determine
the particle excitation energy.
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Figure 7 illustrates our fits for tetrahedron and 𝐶20. We identify negative slopes (i.e. positive
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Figure 7: Single particle correlation functions with exponential fit. Both lattices have 𝑈 = 2 and 𝑁𝑡 = 64.

energies) as Δ𝑁 = +1 transitions and positive slopes as Δ𝑁 = −1 transitions, i.e. when the ground
state has particle number 𝑁 the excited state associated with a single particle correlation function
has particle number 𝑁 + Δ𝑁 . In Figure 8 we show the resulting energies for all four lattices. Again
we provide exact values for the tetrahedron that we calculated from exact diagonalization accounting
for discretized time. Keep in mind that the spectrum is shifted due to the chemical potential and
the ground state might not be at half filling.
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Figure 8: Energy states reachable by particle creation/annihilation from ground state. All systems have
𝑈 = 2 and 𝑁𝑡 = 64.

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
0
7

Reducing the Sign Problem with simple Contour Deformation Christoph Gäntgen

4. Summary & Outlook

We demonstrate that a smart choice of the integration contour can drastically reduce the
sign problem in the Hubbard model without compromising numerical efficacy. Even a basic
transformation like a constant shift can improve the quality of HMC calculations by orders of
magnitude while entailing only negligible computational costs and small human effort. These
methods cannot solve the exponentially hard sign problem, but they can expand the explorable
parameter space at a given budget.

We present our methods of finding such a favorable offset and compare them with each other.
All of them perform much better than the default calculation on the real plane. The recently
developed optimization routine, utilizing fits to the statistical power and its derivatives, provides
more stability than the initial version relying on the Newton-Rhapson method. Also we show the
extraction of energy levels from the correlation functions and confirm that they align with the exact
results on a small system.

In the future we intend to apply these methods to more carbon nano-systems to provide a
detailed analysis of their electronic properties. We will also continue the exploration of simple
contour deformations that do not induce a Jacobian with limiting volume scaling. Some current
ideas that come into question are individual offsets for each component of 𝜙 and offsets combined
with a Gaussian around 0. We hope that these investigations will deepen our understanding of sign
optimizing manifolds and provide better starting points for the training of neural networks.

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
0
7

Reducing the Sign Problem with simple Contour Deformation Christoph Gäntgen

Acknowledgments

We thank Neill Warrington for many helpful discussions related to this work as well as Timo
Lähde for his valuable comments. This work was funded in part by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) through the funds provided to the Sino-German
Collaborative Research Center “Symmetries and the Emergence of Structure in QCD” (NSFC Grant
No. 12070131001, DFG Project-ID 196253076 – TRR110) as well as the STFC Consolidated Grant
ST/T000988/1. This work is supported by the MKW NRW under the funding code NW21-024-A.
We gratefully acknowledge the computing time granted by the JARA Vergabegremium and provided
on the JARA Partition part of the supercomputer JURECA at Forschungszentrum Jülich.

References

[1] A. Alexandru, G. Basar, P. F. Bedaque, G. W. Ridgway, and N. C. Warrington. Monte carlo
calculations of the finite density thirring model. Physical Review D, 95(1), jan 2017.

[2] A. Alexandru, P. F. Bedaque, H. Lamm, and S. Lawrence. Finite-Density Monte Carlo
Calculations on Sign-Optimized Manifolds. Phys. Rev. D, 97(9):094510, 2018.

[3] C. Gäntgen, E. Berkowitz, T. Luu, J. Ostmeyer, and M. Rodekamp. Fermionic sign problem
minimization by constant path integral contour shifts. 2023.

[4] J. Hubbard. Calculation of partition functions. Physical Review Letters, 3(2):77–78, 1959.

[5] J. Ostmeyer, E. Berkowitz, S. Krieg, T. A. Lähde, T. Luu, and C. Urbach. Semimetal–Mott
insulator quantum phase transition of the Hubbard model on the honeycomb lattice. Phys.
Rev. B, 102(24):245105, 2020.

[6] M. Rodekamp, E. Berkowitz, C. Gäntgen, S. Krieg, T. Luu, and J. Ostmeyer. Mitigating the
hubbard sign problem with complex-valued neural networks. Phys. Rev. B, 106:125139, Sep
2022.

[7] K. Splittorff and J. Verbaarschot. Phase of the Fermion Determinant at Nonzero Chemical
Potential. Phys. Rev. Lett., 98:031601, 2007.

[8] R. L. Stratonovich. On a Method of Calculating Quantum Distribution Functions. Soviet
Physics Doklady, 2:416, July 1957.

[9] M. Ulybyshev, C. Winterowd, and S. Zafeiropoulos. Lefschetz thimbles decomposition for
the Hubbard model on the hexagonal lattice. Phys. Rev. D, 101(1):014508, 2020.

[10] J.-L. Wynen, E. Berkowitz, S. Krieg, T. Luu, and J. Ostmeyer. Leveraging machine learning
to alleviate hubbard model sign problems. Phys. Rev. B, 103:125153, Mar 2021.

[11] J.-L. Wynen, E. Berkowitz, C. Körber, T. A. Lähde, and T. Luu. Avoiding ergodicity problems
in lattice discretizations of the hubbard model. Physical Review B, 100(7), aug 2019.

9


	Introduction
	Advanced Offsets
	Results
	Summary & Outlook

