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1. Introduction

Fermions that strongly interact with each other via gauge fields are an essential ingredient for
many models in particle physics. For example, the fermions may constitute the matter component,
such as leptons in electromagnetic and weak interactions, or quarks in strong interactions, and then
the gauge fields may constitute the photon, the 𝑊±, 𝑍 , and the gluons respectively. Gauge fields are
also becoming increasingly important to condensed matter systems, from frustrated magnetism to
theories of deconfined quantum criticality. It thus is interesting to develop efficient simulations for
interacting theories of gauge fields and matter.

While Quantum Monte Carlo (QMC) methods are robust simulation methods for non-perturbative
studies of the aforementioned systems, they are also vulnerable to the sign problem [1]. QMC meth-
ods work by performing importance sampling of configurations that make up the partition function.
Since fermions anti-commute, their sign problem can be straightforwardly understood when the
configurations considered are worldlines: whenever fermions exchange positions an odd number of
times, the configuration weight acquires another negative sign factor, leading to huge cancellations
in the summation and an exponential scaling in the volume for calculations.

Meron cluster methods [2], so named due to the presence of merons (half-instantons) in the
first model for which they were developed to simulate (the 2d 𝑂 (3) sigma model with 𝜃 = 𝜋), can
solve sign-problems in four-fermion Hamiltonians for certain parameter regimes, as well as for free
fermions with a chemical potential [3]. Because these methods sample worldlines, computing the
weights scales linearly with the volume of the system, and negative terms in the partition function
are taken care of by avoiding merons — this is what distinguishes them from bosonic simulations.
Because there are none of the stabilization issues that can arise in determinantal methods, and the
weight computations scale favorably compared to determinantal methods, these cluster methods are
an attractive choice for simulation when applicable. Correspondingly, exciting opportunities open
up when new interesting physical models are found which can be simulated using this method.

Recently, there has been experimental development regarding the physics of confinement and
quantum spin liquids using quantum simulation. The models used to capture the physics involve
fermions interacting with (Abelian) gauge fields. In these proceedings we introduce new cluster
algorithms and develop designer[4] classes of experimentally relevant models which are sign-
problem-free for these cluster simulations, enabling a robust elucidation of their phase diagrams.
More details may be found in our full manuscript [5]. Moreover, the worldline nature of the config-
urations makes it easy to produce measurement “snapshot” synthetic data to compare with quantum
simulators, and such configurations are promising inputs for machine learning algorithms.[6]

2. Models

We build these cluster-algorithm amenable models by beginning with the half-filled 𝑡-𝑉 model,

𝐻 =
∑︁
⟨𝑥𝑦⟩

[
− 𝑡

2

(
𝑐†𝑥𝑐𝑦 + 𝑐†𝑦𝑐𝑥

)
+𝑉

(
𝑛𝑥 −

1
2

) (
𝑛𝑦 −

1
2

)]
. (1)

Here ⟨𝑥𝑦⟩ are nearest neighbor sites, 𝑐† and 𝑐 are creation and annihilation operators respectively,
and the repulsive interaction 𝑉 is given in terms of the occupation number 𝑛 = 𝑐†𝑐. We begin with
this model because it is simulable by meron clusters for 𝑉 ≥ 2𝑡 [3, 7].
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fermion hole

spin-1/2 up spin-1/2 down

Figure 1: The lattice for these models of gauge fields and matter with 𝑁 𝑓 = 1. The spin-1/2 degrees of
freedom are on the links while the fermions may hop from one site to another.

With this starting point, we now build up cluster-amenable Hamiltonians involving gauge fields.
They are organized intoZ2- and𝑈 (1)- gauge symmetric families, which involve the following terms:

𝐻
(𝑔)
𝑁 𝑓

= −
∑︁
⟨𝑥𝑦⟩

𝑁 𝑓∏
𝑓 =1

(
𝐻

(𝑔)
⟨𝑥𝑦⟩, 𝑓 + 𝐻

(𝑔) ,des
⟨𝑥𝑦⟩, 𝑓

)
(2)

The label 𝑔 ∈ {𝑈 (1),Z2} is the gauge symmetry, with

𝐻
Z2
⟨𝑥𝑦⟩, 𝑓 = 𝑡

(
𝑐
†
𝑥, 𝑓

𝑠1
𝑥𝑦, 𝑓 𝑐𝑦, 𝑓 + 𝑐

†
𝑦, 𝑓

𝑠1
𝑥𝑦, 𝑓 𝑐𝑥, 𝑓

)
,

𝐻
𝑈 (1)
⟨𝑥𝑦⟩, 𝑓 = 𝑡

(
𝑐
†
𝑥, 𝑓

𝑠+𝑥𝑦, 𝑓 𝑐𝑦, 𝑓 + 𝑐
†
𝑦, 𝑓

𝑠−𝑥𝑦, 𝑓 𝑐𝑥, 𝑓
)
.

(3)

The hopping of spinless fermions between the nearest neighbor sites 𝑥𝑦 are now governed by the
presence of gauge fields, represented by spin-1/2 operators, 𝑠𝑘𝑥𝑦 , on the bond. Figure 1 illustrates
the lattice with the gauge field and matter degrees of freedom. These terms are lower-dimensional
versions of quantum electrodynamics (QED). Then 𝐻

(𝑔) ,des
⟨𝑥𝑦⟩, 𝑓 is a designer term[4] that makes the

models particularly amenable to the cluster algorithms, (we consider 𝑉 = 2𝑡, for simplicity)

𝐻
Z2,des
⟨𝑥𝑦⟩, 𝑓 = −2𝑡

(
𝑛𝑥, 𝑓 −

1
2

) (
𝑛𝑦, 𝑓 −

1
2

)
+ 𝑡

2

𝐻
𝑈 (1) ,des
⟨𝑥𝑦⟩, 𝑓 = −𝑡

(
𝑛𝑥, 𝑓 −

1
2

) (
𝑛𝑦, 𝑓 −

1
2

)
− 𝑡𝑠3

𝑥𝑦, 𝑓

(
𝑛𝑦, 𝑓 − 𝑛𝑥, 𝑓

)
+ 𝑡

4

(4)

For the Z2 gauge theory, the Pauli matrix 𝑠1 = 𝜎1/2 couples to fermions, and one can
see the local Z2 symmetry from the operator 𝑄𝑥 , which commutes with the 𝐻Z2 and is given
by 𝑄𝑥 = (−1)

∑
𝑓 𝑛𝑥, 𝑓

∏
𝑓 , 𝛼̂ 𝑠3

𝑥,𝑥+𝛼̂, 𝑓 𝑠
3
𝑥− 𝛼̂,𝑥, 𝑓

, where 𝛼̂ are the unit vectors in a 𝑑-dimensional
square lattice. For the 𝑈 (1) theory, one can see the 𝑈 (1) symmetry from the unitary op-
erator 𝑉𝑈 (1) which commutes with 𝐻𝑈 (1) and is given by 𝑉𝑈 (1) =

∏
𝑥 𝑒

𝑖 𝜃𝑥𝐺𝑥 , with 𝐺𝑥 =∑
𝑓

[
𝑛𝑥, 𝑓 −

∑
𝛼̂

(
𝑠3
𝑥,𝑥+𝛼̂, 𝑓 − 𝑠3

𝑥− 𝛼̂,𝑥, 𝑓

)
+ ((−1)𝑥 − 1)/2

]
. These models are quantum link mod-

els [9], which realize the continuous gauge invariance using finite-dimensional quantum degrees of
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Figure 2: Worldlines for the 𝑡-𝑉 model are in (a)-(c), the Z2 theory in (d)-(f), and the 𝑈 (1) theory in (g)-(i).
Image (a) shows the imaginary time direction and the (1+1)-d trotterization, which is the same for all images.
Filled circles are sites occupied by fermions, and empty circles are holes. Figures in the second two rows
also have link variables because they correspond to gauge theories: the upward triangles correspond to spin
+1/2 and the downward triangles correspond to spin −1/2. While the fermionic worldlines are the same in
each column, some configurations that are allowed for the 𝑡-𝑉 model have zero weight for the Z2 and 𝑈 (1)
theories. These are crossed out, and zero-weight plaquettes are shaded red.

freedom. The identification with usual gauge field operators is given by 𝑈𝑥𝑦, 𝑓 = 𝑠+
𝑥𝑦, 𝑓

, 𝑈
†
𝑥𝑦, 𝑓

=

𝑠−
𝑥𝑦, 𝑓

, 𝐸 = 𝑠3
𝑥𝑦, 𝑓

. We note that a straightforward application of the meron idea necessitates the
introduction of an equivalent flavor index for gauge links as fermion flavors. The total Gauss law
can be expressed through a product (Z2) or sum (𝑈 (1)) of the Gauss law of individual flavors
degrees of freedom, and the resulting theories have Z⊗𝑁 𝑓

2 and𝑈 (1)⊗𝑁 𝑓 gauge symmetry. However,
flavored gauge-interactions can also be turned on in the𝑈 (1) model (as explained in our manuscript
[5]), 𝐻𝑈 (1)

𝑁 𝑓 =2 → 𝐻
𝑈 (1)
𝑁 𝑓 =2 + 𝐽

∑
⟨𝑥𝑦⟩ 𝑠

3
𝑥𝑦,1𝑠

3
𝑥𝑦,2, or through a Hubbard-U interaction for both Z2 and

𝑈 (1)-symmetric models [7]. These additions would directly cause ordering for either the gauge
fields or fermions, with the coupling between them leading to the interesting question of how the
other degrees of freedom are affected by this ordering.

3. Algorithm

We first consider the possible worldline configurations for the base models defined in (2) and
(3). Here we use the occupation number basis for the fermions and the electric flux (spin-𝑧) basis.
The partition function in (1 + 1)-d is then

Z = Tr
(
𝑒−𝛽𝐻

)
=

∑︁
{𝑠,𝑛}

⟨𝑠1, 𝑛1 | 𝑒−𝜖 𝐻𝑒
��𝑠2𝑁𝑡

, 𝑛2𝑁𝑡

〉 〈
𝑠2𝑁𝑡

, 𝑛2𝑁𝑡

��
× 𝑒−𝜖 𝐻𝑜 ...𝑒−𝜖 𝐻𝑒 |𝑠2, 𝑛2⟩ ⟨𝑠2, 𝑛2 | 𝑒−𝜖 𝐻𝑜 |𝑠1, 𝑛1⟩ ,

(5)

where 𝐻 = 𝐻𝑒+𝐻𝑜, and 𝐻𝑒 (𝐻𝑜) consists of Hamiltonian terms that correspond to even (odd) links.
This is a Trotter approximation, and all terms within 𝐻𝑒 and 𝐻𝑜 commute with each other. We
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thus have a sum of terms that consist of discrete time-slices 1, · · · , 2𝑁𝑡 , with defined electric flux
and fermion occupation numbers for each of the time-slices. Each of the terms in (5) is a worldline
configuration. Figure 2(a)-(c) give examples of such configurations for the 𝑡-𝑉 model as simulated
by meron clusters. We note that these configurations are similar to the “snapshots” obtained from
experiment in [6], but involve more information from the additional imaginary time direction (one
snapshot would be one horizontal line in a configuration from Figure 2), so we are able to obtain
imaginary time displaced correlations from these configurations.

In the Z2 case, for each time-slice a fermion may hop to an unoccupied nearest neighbor site of
the same flavor. If the fermion hops, then the electric flux on the bond between the nearest neighbor
sites that shares the same fermion flavor index must also flip–this is due to the 𝑠1

𝑥𝑦 operator. Figure
2(d)-(f) gives example configurations for the 𝑁 𝑓 = 1 version of this model. Due to the trace, it is
impossible to have odd winding numbers because these would cause the spins in the initial state to
not match the spins in the final state. The possible worldline configurations for the𝑈 (1) are similar
to the Z2 case, but more restrictive. The 𝑠+𝑥𝑦 and 𝑠−𝑥𝑦 operators allow the hopping for a given flavor
of fermion only in a single direction for each bond, which depends on the orientation of the same
flavored flux on the bond. Figure 2(g)-(i) illustrates an example configuration and restrictions for
the single flavor version of the 𝑈 (1) model. In (1 + 1)-d it is clear that all allowed configurations
must have zero winding number.

The worldline configurations are a tool to obtain cluster configurations by introducing appro-
priate breakups, which decompose the terms in (5) into further constituents. In considering the
allowed worldline configurations given in (2) for the 𝑈 (1) theory, for example, each of the active
plaquettes in each time-slice (shaded in gray) must be one of the plaquettes given in Table 1. The
plaquettes in each row share the same weight, computed using ⟨𝑠𝑏, 𝑛𝑏 | 𝑒−𝜖 𝐻𝑏

��𝑠′
𝑏
, 𝑛′

𝑏

〉
, from (5),

where 𝑏 is a nearest neighbor bond, 𝑏 = {𝑥, 𝑦}. The corresponding breakup cell for each row
gives allowable breakups: if all fermion occupations/spins are flipped along any one of the lines,
the resulting plaquette also exists in this table. From the table, we see two such breakups are
defined, 𝐴 and 𝐷. These breakups resemble the breakups from the original fermionic meron cluster
algorithms, but also involve the link variables–either as additional lines for the 𝐴 breakups, or as
binding lines extending outward from the horizontal 𝐷 breakup lines. This is a key difference for
the new gauge version of the algorithm. By computing the matrix elements for the plaquettes in
each grouping, we find that for the 𝑈 (1) theory, the corresponding breakup weights 𝑤𝐴 and 𝑤𝐷

must obey:
𝑤𝐴 = 1
𝑤𝐷 = exp (𝜖𝑡) sinh 𝜖𝑡

𝑤𝐴 + 𝑤𝐷 = exp (𝜖𝑡) cosh 𝜖𝑡,
(6)

to satisfy detailed balance. We can then simulate this system similarly to the simulation of the
𝑡-𝑉 model at 𝑉 = 2𝑡 [3], by exploring a configuration space where each configuration is defined by
the worldlines and breakups. By assigning breakups to all active plaquettes, we form clusters, and
then updates involve flipping all fluxes and fermions within a cluster, which physically corresponds
to generating a new worldline configuration. The algorithm begins by putting the system in a
reference configuration, defined by the fermionic worldlines only, where the weight is known to be
positive. It is straightforward to see that all configurations can be returned to the fermion worldlines

5
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Plaquettes Breakups
s

s

s

s

A

D

A D

Table 1: Plaquettes and breakups for the 𝑈 (1)-symmetric Hamiltonian. The middle vertical cluster lines
on the 𝐴-breakups and gauge binding lines on the 𝐷-breakups distinguish them from the purely fermionic
versions of these breakups.

of this configuration by cluster flips. For both the𝑈 (1) and Z2 theories, the reference configuration
has a staggered fermionic occupation, where fermions are stationary throughout imaginary time.
Fluxes and breakups may be initially attached to spacetime plaquettes in any nonzero configuration
according to Table 1. A QMC sweep is then:

1. Go through the list of the active plaquettes and update each breakup sequentially.

(a) If the breakup can be changed for a plaquette, change it with probability dependent on
the breakup weights.

(b) If the breakup is changed, consider the new configuration that would result. If it contains
a cluster where flipping the fermion occupation causes the fermions to permute in a way
that produces a negative sign, then it is a meron. In that case, change the breakup back
to its initial state. Rules for identifying merons generalize [3] and are given in greater
detail below.

2. Identify the new clusters from the breakups in the new configuration. For each cluster, flip
all fermion occupation states and spins with probability 1/2.

This describes sampling of the zero-meron sector only, but sectors with other numbers of merons
are relevant for off-diagonal observables. [3] While these cluster rules implement the Hamiltonian
dynamics, Gauss law constraints are not included.

4. Results

To illustrate the efficacy of the algorithm, we discuss results obtained by simulating the (1+1)-d
𝐻

𝑈 (1)
𝑁 𝑓 =1 model in (2), which is related to the massless quantum-link Schwinger model and the PXP

model, where quantum scars were first demonstrated experimentally [8]. We simulate the model

6
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Figure 3: Number of configurations versus Gauss law sector index
∑

𝑥 [𝐺𝑥 + 2] · 4𝑥 (not all indices
correspond to actual sectors) for 50000 equilibrated configurations. Two sectors emerge at large 𝛽: 𝐺𝑥 = 0
and 𝐺𝑥 = (−1)𝑥 .
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Figure 4: The types of clusters that appear as a function of temperature. None of them are merons because
the simulation is in 1 + 1d.

for different temperatures 𝛽 = 1/𝑇 , without imposing the Gauss law. A filter may then be applied
to study the physics in the desired Gauss law sector. The first non-trivial result is the emergence
of two Gauss’ law sectors at low temperatures, as shown in Figure 3, other results are given in our
manuscript [5].

For purely fermionic models, as shown in [3], a loop is a meron if the quantity 𝑛𝑤 + 𝑛ℎ/2 is
even, where 𝑛𝑤 is the number of temporal windings and 𝑛ℎ is the number of fermionic hops in
the loop. For the new gauge-fermion algorithm, we now can bind two or more loops to each other
through the gauge fields, and thus we have the following new meron criterion for a cluster

Meron if

{
𝑛𝑤 + 𝑛ℎ/2 odd, even # of loops
𝑛𝑤 + 𝑛ℎ/2 even, odd # of loops

(7)

It can be seen immediately that (7) reduces to the original definition in the case of one loop. In one
dimension there should be no merons. Figure 4 plots the 𝑛ℎ and 𝑛𝑤 for 100 equilibrated clusters at
low temperature, and indeed we see that by the criterion, none of these clusters are merons.

5. Conclusions

We have generalized the construction of the meron algorithm to cases where staggered fermions
are coupled to quantum link gauge fields. This construction of the Monte Carlo algorithm is agnostic
to the space-time dimension, and paves the way for unbiased studies of large scale gauge-fermionic
system with odd or even numbers of fermionic flavours, and includes models not simulable using
determinantal Quantum Monte Carlo. It is possible to add different microscopic terms by increasing
the allowed ways of bonding the fermions and gauge links. Future extensions could include gauge
fields with larger spin representation and non-Abelian gauge fields as well.

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
1
6

Cluster-Algorithm-Amenable Models of Gauge Fields and Matter Emilie Huffman7

References

[1] Matthias Troyer and Uwe-Jens Wiese (1994) Computational complexity and fundamental
limitations to fermionic quantum Monte Carlo simulations., Phys. Rev. Lett., 94:170201,
2005.

[2] W. Bietenholz, A. Pochinsky, and U. J. Wiese. Meron cluster simulation of the 𝜃 vacuum in
the 2d o(3) model. Physical Review Letters, 75(24):4524–4527, Dec 1995.

[3] Shailesh Chandrasekharan and Uwe-Jens Wiese. Meron cluster solution of a fermion sign
problem. Phys. Rev. Lett., 83:3116–3119, 1999

[4] Ribhu K. Kaul, Roger G. Melko, and Anders W. Sandvik. Bridging lattice-scale physics and
continuum field theory with quantum monte carlo simulations. Annual Review of Condensed
Matter Physics, 4(1):179–215, Apr 2013

[5] Debasish Banerjee and Emilie Huffman. Quantum Monte Carlo for Gauge Fields and Matter
without the Fermion Determinant arXiv:2305.08917, 2023.

[6] Annabelle Bohrdt, and et al. Classifying Snapshots of the Doped Hubbard Model with Machine
Learning Nature Physics volume 15, pages921–924 (2019)

[7] Hanqing Liu, Shailesh Chandrasekharan, and Ribhu K. Kaul. Hamiltonian models of lattice
fermions solvable by the meron-cluster algorithm. Phys. Rev. D, 103(5):054033, 2021.

[8] Hannes Bernien, and et al. Probing many-body dynamics on a 51-atom quantum simulator.
Nature, 551(7682):579–584, Nov 2017.

[9] Uwe-Jens Wiese. From quantum link models to D-theory: a resource efficient framework for
the quantum simulation and computation of gauge theories. Phil. Trans. A. Math. Phys. Eng.
Sci., 380(2216):20210068, 2021.

8


	Introduction
	Models
	Algorithm
	Results
	Conclusions

