PROCEEDINGS

OF SCIENCE

Tuning HMC parameters with gradients

James C. Osborn“*
4 Computational Science Division, Argonne National Laboratory,

9700 S Cass Ave, Argonne, IL 60439, USA

E-mail: osborn@anl.gov

We investigate the effectiveness of tuning HMC parameters using information from the gradients
of the HMC acceptance probability with respect to the parameters. In particular, the optimization
of the trajectory length and parameters for higher order integrators will be studied in the context

of pure gauge and dynamical fermion actions.

The 40th International Symposium on Lattice Field Theory (Lattice 2023)
July 31st - August 4th, 2023
Fermi National Accelerator Laboratory

=Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:osborn@anl.gov
https://pos.sissa.it/

Tuning HMC parameters with gradients James C. Osborn

Gauge field generation in lattice field theory (LFT) generally relies on the Hybrid (or Hamil-
tonian) Monte Carlo (HMC) algorithm [1] which integrates the Hamiltonian equations of motion
to generate a new trial configuration. Higher-order integration schemes have been shown to im-
prove the efficiency of HMC simulations for LFT applications [8]. These higher-order schemes can
have several parameters that, in general, should be tuned for the specific application. Furthermore,
the action can have preconditioners, such as that by Hasenbusch [2], which introduce more free
parameters to tune. While the tuning can be, and often is, done by hand by monitoring the accep-
tance rate and/or norms of the force terms, this can become tedious as the number of parameters
increases. Here we investigate automating the tuning process using techniques commonly employed
in machine learning applications.

1. HMC

The Hybrid Monte Carlo method proceeds by first choosing a random Gaussian momentum
field, p, which is associated with the gauge field degrees of freedom, U. Then the equations of
motion for the Hamiltonian H(p,U) = % p* + S(U), with S(U) the lattice action to be sampled
from, are approximately integrated for some integration time 7. This produces a new set of fields

’

p

g |~ Fe

p
U M

where F,, is the operator implementing the integration scheme and « represents the integration time,
7, and any other tunable integration or action parameters. The new configuration is conditionally
accepted with the probability

P,(p", U, p,U) =min[l,exp(-AH)] 2)
with
AH=H(p',U)-H(p,U) . 3)

1.1 Improved integrators

For simplicity we’ll consider integrators with a single force type which could be either a gauge
force or a combined gauge and fermion force. The integrator F,, is an approximation of exp(7[A +
B]) where the operator A is the gauge field update and B is the momentum update using the force
term. This update can be divided into n copies of a base integrator as exp(7[A + B]) = [exp(e[A +
B])]" with e = 7/n.

To start, we consider a simple two-step base integrator given by the approximation

ee(A+B) ~ ee/lAe(f/Z)Bee(l—Z/l)Ae(5/2)Bee/lA (4)
where A is a free parameter to tune. Omelyan, et al. [5] gave an optimal value for this parameter

of 1 = 0.193, under the assumption that the two operators that appear in the leading order error
term have equal magnitudes. While this assumption produces a reasonably good integrator, for

Tuning HMC parameters with gradients James C. Osborn

LFT applications, the magnitudes may not be very close, and one can typically reduce the error by
tuning the parameter for specific actions [8].

One can also consider higher order integrators, such as force-gradient variants. The force-
gradient integrator we will consider here is

ee(A+B) ~ eeHAee/lBe(e/Z)(l—ZH)Aee(1—2/1)B+e3/\/Ce(e/2)(1—29)A€E/lBe69A (5)

where C = [B, [A, B]] is the force-gradient term. For simplicity we implement this term using the
method introduced in [9]. This force-gradient update has three parameters, 6, A, and y, that can be
tuned, however the cancellation of the order €’ errors places a constraint on two of the parameters,
leaving only one free parameter. Here, for testing purposes, we will leave all three unconstrained
when tuning in order to evaluate the tuning process, and to allow for a compromise in reducing the
order €’ error at the expense of not completely canceling the order € errors.

In full LFT simulations with dynamical quarks, there can also be different integration scales
used for the gauge force and the fermion forces, using a recursive integrator [7], which can introduce
many more parameters, although we will not consider those here. As the number of free parame-
ters in the integration increases, the prospect of automated tuning becomes a particularly attractive
alternative to the conventional methods of tuning by hand.

2. Loss function

To measure the efficiency of the integrator, we consider a cost function based on the effective
integration time. For a set of N HMC update steps, each of integration time 7, the total effective
integration time is

TV(Pa)N (6)

where (P,) is the average acceptance probability and the square root comes from the random walk
due to choosing a new momentum at the beginning of each HMC update. The number of update
steps needed to go T effective integration time units is then

T2

Nr=—.
r <Pa>7'2

(7
We can then define the cost of updates for an effective integration time 7 as the cost per update
of length 7, times Np. For simplicity we set the cost per update based on the number of force
evaluations, N force, and take 7 = 1. This gives the final cost metric

Nforce

Cost = NTNforce = W .

®)

We want to minimize the cost function (8), however this quantity has an average in the denom-
inator which makes it inconvenient to work with. Instead we minimize the loss function

Loss = —(P,)7? ©)

which has a similar effect and is much easier to work with. For the minimization we use machine
learning (ML) methods and use the gradient of the loss function to update the HMC parameters.

Tuning HMC parameters with gradients James C. Osborn

We use the Adam optimizer [4] and accumulate the gradient during the update using a single update
stream (batch size of one). Since the Adam optimizer already accumulates the gradient information
during the optimization process, we do not need to explicitly include the ensemble average of P, in
the loss function, and instead just calculate the gradient of P, for the current HMC update. We then
update the tunable parameters based on the accumulated gradient at the end of every HMC update.

3. Calculating gradients

Optimizing the parameters « requires calculating the gradient of the loss function in Eq. (9)
with respect to each of the parameters «. This is typically done through back propagation, which
starts from the definition of the loss function and evaluates the chain rule back through all the
intermediate fields.

The main task is evaluating the gradient of P,, which is a function of H(p’,U’) = H’. Note
that if AH < O then the gradient of P, is zero. In the other case, we consider the integrator as a
series of individual update steps. For example, for n copies of the two-step integrator, written in
operator notation, we have

’

P [ee/IAe(5/2)Bee(1—2/1)Ae(5/2)Bee/lA]n 4 (10)
U’ U
We can calculate the gradients from chain rule
oH’ oH’
oa T Oqx Ol
where
Pk
= 12
gk U (12)

is the field state after the kth integrator step (either applying A or B) starting with go = (p, U). The
first term in the chain rule, Eq. (11), is accumulated from the end of the update working backwards
using

OH’ OH' 0 qk+1

= (13)
0qr 0qry1 Oqx

and the second term is the gradient of the individual update step with respect to the parameters
keeping the input fields, g1, fixed. One then needs to calculate the gradients for the individual
update steps which we do not include here. One issue with the calculation of the gradients is the
need to save all the intermediate fields during an update step. This requires a large increase in the
memory usage, however since the HMC is typically scaled out to many nodes to reduce the time
per update as much as possible, memory use is not likely to be a limiting factor.

Tuning HMC parameters with gradients James C. Osborn

10 g T 3
E 500443 04 450 no tuning —— | ' ' ' '
[notuning x E 400 F tuningt % T
1F tuning T tuning A

283*x**3
tuning A a
tuningtA o

350 | tuning T,A 4
0.1F

sqrt(<AHZ>)
Cost

0.01 |

0.001 E
150 | .

0.0001 [n n n n n PR S T |] 100 1 1 1 1 1 1 1
0.01 0.1 0.1 011 0.12 0.13 0.14 0.15 0.16 0.17 0.18

T T

Figure 1: Pure gauge simulation with single copy (n = 1, € = 7) of a two-step integrator with and without
tuning on the trajectory length, 7, and the integrator parameter A. Left: RMS integration error versus trajec-
tory length. Right: Cost versus trajectory length.

4. Results

The code was implemented using the QEX LFT framework [3, 6]. We are using a simple “tape”
implementation which saves a list of operations forming the HMC update. The tape is then run in
the forwards direction to perform the HMC update, and can be run in the backwards direction to
produce the gradient of the full HMC update step. All runs were done on a relatively small 123 x 24
lattice running on a single desktop.

4.1 Pure gauge results

The initial tests were performed on a pure gauge theory with a plaquette action at 8 = 5.6. For
all runs we started from a thermalized configuration and then ran 200 tuning updates and 400 mea-
surement updates. The number of tuning updates was taken as a constant for all runs for simplicity
and was chosen to ensure that all runs were sufficiently tuned. In many cases the number of tuning
updates could have been lowered without impacting results.

We first examined tuning HMC using an integrator with a single copy of a two-step update with
the field update first. Here there are two parameters we can tune, the trajectory length, 7, (which is
the same as the step size, €, for a single copy) and the integrator parameter A.

On the left panel of Figure 1 we show results for the root mean squared (RMS) integrator error,
V{(AH?), versus 7 for tuned and untuned runs. The green x’s are for no tuning, using the Omelyan,
et al. value of 1. The error scales as 73 for small 7 as expected for a second order integrator, and
is demonstrated by the purple line. If we tune 7, then we end up with the points marked with blue
stars, which are at larger values of T where the asymptotic 7> scaling starts to break down. Each
star represents an independent tuning run. The black triangles are for tuning A at each value of 7.
Again this scales as 73 for small 7, but now with a smaller coefficient as shown by the red line. The
blue circles are the values obtained from runs tuning both A and 7. Again the tuned value of T ends
up right around the value where the asymptotic scaling with 7 starts to break down.

On the right panel of Figure 1 we show results for the cost function, Eq. (8), versus 7 for tuned
and untuned runs. For the case where A4 wasn’t tuned, we can see that tuning 7 was able to find
values of T that were near the minimum of the cost function. For the case of tuned A, the minimum

Tuning HMC parameters with gradients James C. Osborn

0.208 LI T T T T T T 0.21 T
tuningt + x
0.206 [tuning T,A x E 0.208 - 1
0204 k x % Kxox | 0.206 |- -
0.202 | | 0.204 | -
0.202 |- .
< 0.2 | b <
02} i
0.198 -] 0.198 |- -
0.196 - n 0.196 [.
0.194 - - L i
++ o+ 0.194 o
0192 1 1 1 1 1 1 1 0192 1 1 1 1 1 1 1
0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165 0.148 0.15 0.152 0.154 0.156 0.158 0.16 0.162 0.164
T T

Figure 2: . Pure gauge simulation with single copy (n = 1, € = 1) of a two-step integrator. Left: Tuned
parameters. Right: Parameter paths during tuning.

160 T T T T T T T T T
+
140 | AL
.
120 -
X
- 100 | i
%)
o
© s} i
1ABABA +
60 - 2ABABA x]
4 ABABA
40 8 ABABA -
o 16 ABABA o©
20 1 1 1 1 1 1 1 1 1

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17
€ = T/(# ABABA)

Figure 3: Cost versus integrator step size for pure gauge simulation with multiple copies (n = # ABABA)
of a two-step integrator with all parameters tuned.

of the cost is very shallow, so the spread of the runs with tuned 7 is larger, but the values found were
still close to optimal.

In the left panel of Figure 2 we show the final values of the tuned parameters for several tuning
runs with and without tuning 4. The tuned values are fairly consistent within each case, but there is
a large difference between the two cases.

In the right panel of Figure 2 we show the trajectories taken in the parameter space during
tuning when both parameters are tuned, all starting from the same point. While the trajectories may
look very different, the final values are fairly consistent. We also saw a similar convergence when
using different starting parameters.

In Figure 3 we show the cost versus step size for the fully tuned HMC with an integrator con-
taining different numbers of copies of the two-step integrator. We can see that increasing the number
of copies decreases the cost up to the 16 copies used here. Also, the tuned value of € varies with
the number of copies.

In the left panel of Figure 4 we show results for the RMS integration error versus 7 for the pure
gauge action using the force-gradient integrator. We found that the tuning rate used in the Adam
optimizer had a large effect on the final result when 7 was held fixed at a small value. We had to
decrease the tuning rate from the default of 1073 to 107 in order to see the expected 7> scaling of
the error when tuning the parameters. However the error with the untuned parameters, did achieve
the expected scaling and performed at least as well as the tuned case. So in this case, tuning the

Tuning HMC parameters with gradients James C. Osborn

100 :

E 150 T T T
3 no tuning —+—

1 .)/ 140 - tuningt x
r L L tuning 6,A,x 4
3 130
e/ E tuning T,0,A,x

0.01

T70%x**5
no tuning x o

tuning T 3
tuning 6,A, rate 103

Cost

sqrt(<AHZ>)

0.0001

le-06 tuning O,A,x rate 104 & .
tuning 8,A,x rate 10° o i
tuning T,0,A,X .
1e-08 s P | H N 60 1 1 1 1 I 1 1
0.01 0.1 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

T T

Figure 4: Pure gauge simulation with single copy (n = 1, € = 7) of a force-gradient integrator. Left: RMS
integration error versus trajectory length. Right: Cost versus trajectory length.

3000 T T T 1300 : : : : :
no tuning —+—
tuningt %
tuning A 1200 1
2500 I tyning T,A 1 *
1100 |- -
3 o x
3 2000 T 3 1000 | 1
o o
900 E
1500 e no tuning ——
| tuningt % i
800 tuning 6,A,x
tuning T,6,A,x
1000 1 1 1 1 700 1 1 1 1 1
0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09
T T

Figure 5: Cost versus trajectory length for staggered quark simulations with a single integrator copy (n = 1,
€ = 7). Left: Two-step integrator. Right: Force-gradient integrator.

force-gradient integrator did not seem to be necessary.

In the right panel of Figure 4 we show results for the cost versus 7 for the pure gauge action
using the force-gradient integrator. The runs with tuning T were consistently able to find the minimal
cost value as seen from comparing to the runs with different fixed values of 7.

4.2 Staggered quark results

Next we performed tests using a single copy (4 tastes) of unimproved staggered quarks with the
plaquette gauge action. The lattice volume, 123 x24, and 8 = 5.6 were the same as in the pure gauge
runs. The staggered mass was set to m = 0.04 which gives a pion mass of about 0.5 in lattice units.
Since the fermion force is much more expensive than the gauge force, we only count the number
of fermion force computations in calculating the cost function. We also put the gauge and fermion
forces on the same integrator timescale for simplicity, instead of using a nested integrator.

Figure 5 shows the cost versus 7 for staggered fermion HMC with the two-step (left panel) and
force-gradient (right panel) integrators. Note that the force-gradient integrator can be generalized
such that the integrator parameters A and y have different values for the gauge and fermion forces,
and we allowed them to be tuned independently. We find that tuning 7 is able to reliably find the
minimal cost and that tuning the other HMC parameters gives a noticeable improvement. Note that
for the case of staggered quarks, as opposed to pure gauge, we see a significant improvement when

Tuning HMC parameters with gradients James C. Osborn

1400 T T T T T T

1300 | + + 4
1200 F .
1100 F 4
1000 F .
2 900 | .
o
S 800 F . 4
700 4
600 | .
500 1 ABABA +
2ABABA x
400 |- 4 ABABA
300 1 1 1 1 1 1

0.034 0.036 0.038 0.04 0.042 0.044 0.046 0.048
€ = T/(# ABABA)

Figure 6: Cost versus integrator step size for staggered quark simulations with multiple copies (n = #
ABABA) of a two-step integrator with all parameters tuned.

tuning the force-gradient integrator.

In Figure 6 we show the cost versus step size for staggered HMC with multiple copies of the
two-step integrator. As with the pure gauge case, we see that the cost decreases as the number of
copies increases up to the 4 copies tested. Note that for two copies of the two-step integrator, the cost
is similar to that of the tuned force-gradient integrator (which has the same number of fermion force
evaluations), with the force-gradient cost function being slightly lower. Without tuning however, the
force-gradient integrator is much worse than two copies of the two-step integrator. As the volume
increases we expect that the force-gradient integrator will perform even better, but only if properly
tuned.

5. Summary

We explored implementing and optimizing HMC simulations using gradient information with
methods borrowed from ML applications. Overall we found that tuning HMC parameters using
gradient information works well, at least for the cases tested here. In most cases tuning the HMC
parameters made the HMC more efficient with the only exception being the case of pure gauge action
with the force-gradient integrator. Using the gradients is a very convenient way to tune HMC, once
the initial investment to develop the implementation has been done.

We also found that the force-gradient integrators may work much better when tuned, at least
in the case of staggered fermions, and could be competitive with other integrators even on small
volumes. We plan to continue testing this approach with other actions (improved gauge, improved
fermions and with rooting) and with tuning the mass parameters in Hasenbusch preconditioners.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collabora-
tive effort of the U.S. Department of Energy Office of Science and the National Nuclear Security
Administration. This work was performed at Argonne National Laboratory which is supported un-
der Contract DE-AC02-06CH11357.

References

[1] Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid monte carlo.
Physics Letters B, 195(2):216-222, 1987.

Tuning HMC parameters with gradients James C. Osborn

[2] Martin Hasenbusch. Speeding up the hybrid monte carlo algorithm for dynamical fermions.
Physics Letters B, 519(1):177-182, 2001.

[3] Xiao-Yong Jin and James C. Osborn. QEX: a framework for lattice field theories. PoS,
ICHEP2016:187, 2017.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proc. 3rd
International Conference for Learning Representations, 2015.

[5] L. P. Omelyan, I. M. Mryglod, and R. Folk. Optimized verlet-like algorithms for molecular
dynamics simulations. Physical Review E, 65(5), May 2002.

[6] James C. Osborn et al. Quantum EXpressions lattice field theory framework.
https://github.com/jcosborn/qgex.

[7] J.C. Sexton and D. H. Weingarten. Hamiltonian evolution for the hybrid monte carlo algorithm.
Nuclear Physics B, 380(3):665-677, August 1992.

[8] Tetsuya Takaishi and Philippe de Forcrand. Testing and tuning symplectic integrators for the
hybrid monte carlo algorithm in lattice qcd. Physical Review E, 73(3), March 2006.

[9] Hantao Yin and Robert Mawhinney. Improving DWF Simulations: Force Gradient Integrator
and the Mobius Accelerated DWF Solver. PoS, Lattice 2011:051, 2012.

	HMC
	Improved integrators

	Loss function
	Calculating gradients
	Results
	Pure gauge results
	Staggered quark results

	Summary

