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We present our sparse modeling study to extract spectral functions from Euclidean-time correlation
functions. In this study covariance between different Euclidean times of the correlation function is
taken into account, which was not done in previous studies. In order to check applicability of the
method, we firstly test it with mock data which imitate possible charmonium spectral functions.
Then, we extract spectral functions from correlation functions obtained from lattice QCD at finite
temperature.
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1. Introduction

Meson spectral functions play a crucial role to study properties of the hot and dense medium
formed in relativistic heavy ion collisions since they carry important theoretical information on
probes of the Quark-Gluon Plasma such as the thermal dilepton rate [1–3] and quarkonia [4]. Es-
pecially, the low frequency part of the spectral function is associated with transport coefficients
(e.g., the heavy quark diffusion coefficient [5]), which are important inputs for explaining transport
phenomena in the experiments.

Lattice QCD calculations, however, cannot obtain the spectral function directly but it is acces-
sible from the meson correlation function 𝐺 of Euclidean time 𝜏 through the following relation:

𝐺 (𝜏) =
∫

𝑑3𝑥⟨𝐽𝐻 (𝜏, ®𝑥)𝐽𝐻 (0, ®0)⟩ =
∫ ∞

0
𝑑𝜔𝐾 (𝜔, 𝜏)𝜌𝐻 (𝜔), (1)

where 𝐽𝐻 represents the local meson operator of a channel 𝐻 and 𝐾 is the integration kernel defined
by

𝐾 (𝜔, 𝜏) ≡
cosh

[
𝜔

(
𝜏 − 1

2𝑇

)]
sinh

(
𝜔
2𝑇
) (2)

in the Euclidean time range 0 ≤ 𝜏 ≤ 1/𝑇 with temperature 𝑇 .
When the frequency 𝜔 is discretized, eq. (1) can be simply written as a linear equation

®𝐺 = 𝐾 ®𝜌, (3)

where ®𝐺 and ®𝜌 are 𝑀 and 𝑁 dimensional vectors, respectively, and 𝐾 is an 𝑀 × 𝑁 matrix. For
typical lattice QCD calculations the temporal lattice size, i.e., 𝑀 is of 𝑂 (10) while 𝑁 must be
of 𝑂 (1000) for sufficiently good resolution of the spectral function. Therefore, solving eq. (3) to
extract the spectral function is an ill-posed inverse problem.

There are lots of previous studies on extracting spectral functions from lattice QCD data, using
various techniques based on different ideas [6–8]. Sparse modeling is one of such techniques, which
was applied recently for the first time to lattice QCD data to obtain spectral functions of the energy-
momentum tensor and the shear viscosity [9]. In this study we conduct a more comprehensive
investigation into the applicability of sparse modeling. Moreover, we also compare our results with
those of one of the previous studies to properly estimate the systematic uncertainty.

2. Sparse modeling

Extracting spectral functions by using sparse modeling has been proposed in condensed matter
physics [10, 11]. The following is a brief summary of the sparse modeling procedures in this study.

1. Perform a singular value decomposition of the kernel 𝐾:

𝐾 = 𝑈𝑆𝑉 t, (4)

where 𝑆 is a diagonal matrix composed of singular values, and𝑈 and𝑉 are 𝑀 ×𝑀 and 𝑁 ×𝑁
orthogonal matrices, respectively.
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2. Transform the basis of the correlation function ®𝐺 and the spectral function ®𝜌 by 𝑈t and 𝑉 t,
respectively:

®𝐺′ ≡ 𝑈t ®𝐺, ®𝜌′ ≡ 𝑉 t ®𝜌. (5)

3. Choose up to 𝐿-th largest singular values satisfied with the condition 𝑠𝑙/𝑠1 ≥ 10−15, where
𝑠𝑙 is the 𝑙-th largest singular value, and drop the components of ®𝜌′ and ®𝐺′ corresponding to
the other small singular values, which reduces the size of 𝑈, 𝑉 and 𝑆 to 𝑀 × 𝐿, 𝑁 × 𝐿 and
𝐿 × 𝐿, respectively.

4. Construct the cost function 𝐹 ( ®𝜌′) from the square error and the L1 regularization term:

𝐹 ( ®𝜌′) = 1
2
( ®𝐺′ − 𝑆 ®𝜌′)t𝑈t𝐶−1𝑈 ( ®𝐺′ − 𝑆 ®𝜌′) + 𝜆 | | ®𝜌′ | |1 ≡ 𝜒2( ®𝜌′) + 𝜆 | | ®𝜌′ | |1. (6)

Here, 𝐶 in the first term is the covariance matrix defined by

𝐶𝑖 𝑗 =
1

𝑁conf (𝑁conf − 1)

𝑁conf∑︁
𝑛=1

(
𝐺 (𝜏𝑖) − 𝐺 (𝑛) (𝜏𝑖)

) (
𝐺 (𝜏𝑗) − 𝐺 (𝑛) (𝜏𝑗)

)
, (7)

𝐺 (𝜏𝑖) =
1

𝑁conf

𝑁conf∑︁
𝑛=1

𝐺 (𝑛) (𝜏𝑖), (8)

where 𝑁conf is the total number of gauge configurations and 𝐺 (𝑛) (𝜏) is the value of the
correlation function measured on the 𝑛-th gauge configuration. In the second term | | · | |1
stands for the L1 norm defined by | | ®𝜌′ | |1 ≡ ∑𝐿

𝑖=1 |𝜌′𝑖 | and 𝜆 is a positive hyperparameter which
controls the contribution of the L1 regularization relative to the square error. Note that the
commonly-used maximum entropy method has a different regularization term proportional to
the Shannon-Jaynes entropy, which measures difference between an output spectral function
and a default model which contains prior information.

5. Estimate the optimal value of 𝜆, 𝜆opt, in the same way as the previous study [9], i.e., we vary
𝜒2( ®𝜌′) as a function of 𝜆 and search for a kink (see fig. 1).

6. Find the most likely spectral function by minimizing the cost function 𝐹 ( ®𝜌′) using the ADMM
algorithm [12] with the positivity constraint 𝜌𝑖 ≥ 0.

Figure 1: 𝜒2 ( ®𝜌′) in eq. (6) as a function of 𝜆 in the mock data test with 𝑁𝜏 = 16 mentioned later. The black
filled circle represents the optimal value of 𝜆, 𝜆opt.
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𝑚𝜌 𝑚𝜋 𝐹𝜌 𝜔0 𝛿 𝛼𝑠

0.77 0.14 0.142 1.3 0.2 0.3

Table 1: The values of parameters in 𝜌in (𝜔). The lattice spacing 𝑎 is set to 1 GeV−1.

What differs from the previous study [9] is that the covariance matrix is considered in 𝜒2( ®𝜌′) of the
cost function so that correlation of 𝐺 between different imaginary times is taken into account.

3. Mock data tests

Before we analyze the actual lattice QCD data by using sparse modeling, we test it with mock
data which imitate possible charmonium spectral functions.

We used the same mock data to those defined in ref. [13]. The input spectral function 𝜌in(𝜔)
was set to that in the vector channel of electron-positron pair annihilation, which is given by

𝜌in(𝜔) =
2𝜔2

𝜋

[
𝐹2
𝜌

Γ𝜌 (𝜔)𝑚𝜌

(𝜔2 − 𝑚2
𝜌)2 + Γ2

𝜌 (𝜔)𝑚2
𝜌

+ 1
8𝜋

(
1 + 𝛼𝑠

𝜋

) 1
1 + 𝑒 (𝜔0−𝜔)/𝛿

]
, (9)

where 𝐹𝜌 is the residue of 𝜌 meson resonance defined by

⟨0|𝑑𝛾𝜇𝑢 |𝜌⟩ =
√

2𝐹𝜌𝑚𝜌𝜖𝜇 =
√

2 𝑓𝜌𝑚2
𝜌𝜖𝜇, (10)

with the polarization vector 𝜖𝜇, and the function Γ𝜌 (𝜔) represents the threshold of decay from a 𝜌
meson to two 𝜋 mesons as

Γ𝜌 (𝜔) =
1

48𝜋
𝑚3

𝜌

𝐹2
𝜌

(
1 − 4𝑚2

𝜋

𝜔2

)3/2

𝜃 (𝜔 − 2𝑚𝜋), (11)

with the 𝜌 meson mass 𝑚𝜌 and the pion mass 𝑚𝜋 . We set the lattice spacing 𝑎 to 1 GeV−1. The
values of the parameter such as 𝑚𝜌 and 𝑚𝜋 are listed in table 1.

The central values of correlation function 𝐺 (𝜏) were given by integrating 𝜌in𝐾 , where 𝐾 =

𝑒−𝜔𝜏 , over 𝜔. Since this kernel is only an exponentially dumped function, the imaginary time
resolution Δ𝜏 was set from 𝜏max = Δ𝜏(𝑁𝜏 − 1), where 𝜏max and 𝑁𝜏 represent the maximum
imaginary time length and the temporal lattice size, respectively. In this study, we fixed Δ𝜏 to 0.5.
Errors of 𝐺 (𝜏) were generated by gaussian random numbers with the variance 𝜎(𝜏) = 𝑏 · 𝑒𝑎𝜏𝐺 (𝜏)
in order to incorporate the fact that the error of lattice correlation functions increases as 𝜏 increases.
We used 𝑎 = 0.1 and 𝑏 = 10−10, respectively. In this test, no correlation of 𝐺 (𝜏) between different
𝜏 was considered, i.e., 𝐶 is diagonal.

In this study, we consider that the range of 𝜔 is from 0 to 6 and the number of points in 𝜔-space
is 𝑁𝜔 = 601. We performed tests on three different 𝑁𝜏 which were set to 16, 31 and 46. In order
to measure the difference between the input data of the spectral function 𝜌in and the corresponding
output result 𝜌out, the reconstruction error 𝑟 is defined by 𝑟 =

∑𝑁𝜔

𝑗=1
(
(𝜌in(𝜔 𝑗) − 𝜌out(𝜔 𝑗))/𝜔2)2.

Figures 2(a)-(c) show the spectral function as a function of 𝜔 for 𝑁𝜏 = 16, 31 and 46,
respectively. The blue dashed lines and red solid lines represent 𝜌in and 𝜌out, respectively. The
values of the reconstruction error 𝑟 for each 𝑁𝜏 are shown in each figure. The reconstruction error
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Figure 2: Spectral functions calculated by using sparse modeling in the mock data tests with (a) 𝑁𝜏 = 16,
(b) 𝑁𝜏 = 31 and (c) 𝑁𝜏 = 46. The blue dashed lines and red solid lines represent the input mock data 𝜌in
and the output result 𝜌out.

Figure 3: The same as fig. 2 but for the mock data with no peak. In figure (b), we further dumped 𝜌in in the
high-𝜔 region. In figure (a), the two lines overlap each other almost perfectly.

𝑟 becomes smaller as 𝑁𝜏 becomes larger. Unfortunately, even though the positivity condition is
imposed in our analysis, it is not satisfied in the low-𝜔 region.

We also tested the case where we intentionally removed the peak from 𝜌in. Figures 3(a) and
(b) show the resulting spectral functions as a function of 𝜔 with 𝑁𝜏 = 46. In fig. 3(b), we further
dumped 𝜌in in the high-𝜔 region. In both cases, the oscillations of 𝜌out are weaker than those in the
case of 𝜌in with a peak, and the positivity condition is almost satisfied.

4. Results from lattice data

Next, we extracted the spectral function from actual lattice QCD data.
The lattice data used in this study were given in ref. [14], where the correlation functions

were measured with the 𝑂 (𝑎)-improved Wilson quark action on quenched gauge configurations
generated by using the standard plaquette gauge action. The lattice spacing 𝑎 = 0.010 fm and
the corresponding 𝑎−1 is about 18.97 GeV. The spatial extent 𝑁𝜎 and the temporal extent 𝑁𝜏 are
128 and 96, respectively. This setup corresponds to temperature 𝑇 ≃ 0.73𝑇c. We utilized meson
correlation functions in the vector channel. The number of gauge configurations is 234.

The integration kernel is given in eq. (2), which diverges at 𝜔 = 0. Moreover, the correlation
function is influenced by lattice cutoff effects at small 𝜏 distances. To address these issues, we used
a modified kernel and a modified spectral function defined by

𝐾̃ (𝜔, 𝜏; 𝜏0) ≡ 𝜔2 𝐾 (𝜔, 𝜏)
𝐾 (𝜔, 𝜏0)

= 𝜔2
cosh

[
𝜔

(
𝜏 − 1

2𝑇

)]
cosh

[
𝜔

(
𝜏0 − 1

2𝑇

)] , 𝜌̃(𝜔; 𝜏0) =
𝜌(𝜔)
𝜔2 𝐾 (𝜔, 𝜏0), (12)
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Figure 4: Spectral function obtained from the actual lattice QCD data.

and we used the correlation function data from 𝜏0/𝑎 to 𝑁𝜏/2, where 𝜏0/𝑎 was set to 4.
Figure 4 shows our result of the spectral function. The spectral function starts increasing

around 2 GeV and has a broad peak around 4 GeV. The locations of the first peaks obtained from
MEM is about 3.48 GeV and the 𝐽/𝜓 mass given by a single exponential fitting to the spatial
correlation function is about 3.47 GeV [14]. Our result is a bit larger compared to these results.

5. Summary and outlook

We applied sparse modeling for extracting the spectral function from the Euclidean-time meson
correlation function. Since the correlation function at different imaginary times correlate with each
other, in the cost function we introduced the square error term with the covariance matrix so that
covariance of the correlation function between different Euclidean times were taken into account.

First, we tested sparse modeling with mock data of the spectral function in the vector channel
of electron-positron pair annihilation and checked applicability of sparse modeling. This test
confirmed that reconstruction error becomes smaller as the number of data points of the correlation
function becomes longer. We also found that spectral functions with a peak violate the positivity
condition, while those with no peak are almost positive. Then, we tried to extract the spectral
function from the vector charmonium correlation function obtained from lattice QCD. Then, We
got a spectral function with a broad peak around 4 GeV, which is a bit larger compared to the results
in the previous study.

Base on this study, it is necessary to further investigate how to keep positivity of spectral
functions, how to find the optimal 𝜆 and convergence of ADMM iterations. Investigating whether
transport peaks appear in the spectral functions at higher temperature is also our future work.
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