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To accelerate the HMC with field transformation, we consider a variant of the trivializing map, the
decimation map, which can be regarded as a coarse-graining transformation. Using the 2D 𝑈 (1)
pure gauge model, combined with the guided Monte Carlo algorithm, we show that the integrated
autocorrelation time of the topological charge can be exponentially improved in the wall clock
time. Our study indicates that incorporating renormalization group picture is a powerful and
essential ingredient to accelerate the HMC at large 𝛽.
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1. Introduction

Critical slowing down is intrinsic to Monte Carlo study of lattice quantum field theories, but is
not yet resolved satisfactorily. The state of the art algorithm for the gauge field generation in QCD
is the Hybrid Monte Carlo (HMC) [1], and there are two major directions to cope with the critical
slowing down in this algorithmic framework (see [2, 3] for reviews). One is to align the velocity
in the molecular dynamics (MD) among all the Fourier modes [4–8], and the other is to construct
a field transformation such that the resulting effective action has advantageous sampling properties
[10, 11] (see also [12–18]).

This study follows the latter approach following Lüscher’s seminal work [10], and we consider
trivialization of link variables. A difference, however, is that we divide the lattice into local
blocks while the original work considered the global trivialization. In fact, our field transformation
corresponds to eliminating links from the theory, namely decimation of the variables. When a link
is trivialized, the effective action for the surrounding links exactly agrees with that of the integrated
theory. Our approach thus incorporates the idea of renormalization group.

In general, such an algorithm can be extremely complex. We thus first test our idea with the
simplest gauge theory possible: the pure 𝑈 (1) gauge theory in two spacetime dimensions. The
peculiarity of this model is that there is no propagation mode; the correlation length defined by
the plaquette correlation function is zero. A nontrivial quantity is the topological charge under the
periodic boundary condition, which counts the winding number of 𝑈 (1) plaquette angles around
the faces, i.e., the number of vortices. The density of vortices is determined by the susceptibility,
which is finite in the continuum limit. In other words, there is a typical volume scale in which a
vortex appears. Accordingly, we need to move the variables collectively on fine lattices to induce
topological tunneling. In fact, in the HMC, we observe that the tunneling becomes exponentially
hard as in QCD. The goal of this study is to demonstrate that the decimation map can reduce the
autocorrelation of the topological charge significantly.

The algorithm consists of two parts as in the original trivializing map. We first construct a
series of local trivializing maps, namely the decimation map, by solving the linear equation for
the gradient flow kernel. We here parameterize the function space with Wilson loops and directly
invert the linear equation with an iterative solver. We then use the guided Monte Carlo [19] for
configuration generation, which is a variant of the HMC replacing the action in the MD Hamiltonian
by an approximate one. The effects of finite flow step size and the approximated action are under
control and the volume scaling is power-law while keeping the exact detailed balance.

We test our algorithm on a small system of the physical volume 𝑉phys = 62/𝑔2, where 𝑔 is the
dimensionful coupling constant. This volume corresponds to the typical scale of a single vortex.
We show that we obtain ×73 speedup in the integrated autocorrelation time in wall clock at 𝛽 = 7.1
(16 × 16 lattice), and furthermore, the exponent towards the continuum limit is decreased with a
factor of 0.62. Our decimation map exemplifies that the HMC of a gauge theory can be accelerated
with a suitable field transformation.
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2. Decimation map

The idea of the decimation map can be described simply in the 2D𝑈 (1) model with the Wilson
action:

𝑆(𝑈) ≡ −𝛽
∑︁
𝑥

cos 𝜅𝑥 , (1)

where 𝛽 = 1/(𝑎𝑔)2 with the lattice spacing 𝑎 and the coupling 𝑔 that determines the scale in the
system. 𝜅𝑥 is the plaquette angle:

𝜅𝑥 ≡ 1
𝑖

log(𝑈𝑥,0𝑈𝑥+0,1𝑈
†
𝑥+1,0𝑈

†
𝑥,1). (2)

As in figure 1, we iteratively choose a set of independent link variables to trivialize. Each stage of

first stage second stage

Figure 1: The basic idea of the decimation map is a successive local trivialization of link variables. At each
stage, a set of independent link variables (colored with magenta) are chosen and trivialized.

trivialization doubles the size of fundamental Wilson loops in the theory.
Let us write by 𝑈′

𝑥,𝜇 the link variables to be trivialized and by �̃�𝑥,𝜇 the remaining variables.
Once the trivialization is performed successfully with the map:

𝑈′
𝑥,𝜇 = F𝑥,𝜇 (𝑉 ; �̃�), (3)

where𝑉𝑥,𝜇 are the trivialized variables, the action will be transformed accordingly from the original
one 𝑆 = 𝑆(𝑈′, �̃�) to:

𝑆eff (�̃�) ≡ 𝑆(𝑈′(𝑉 ; �̃�), �̃�) − ln det F ∗(𝑉 ; �̃�), (4)

where F ∗ is the Jacobian of the map F . Then one can immediately see that 𝑆eff agrees with the
action we obtain after integrating over𝑈′ from the original action:∫

(𝑑𝑈′) (𝑑�̃�)𝑒−𝑆 (𝑈′ ,�̃�) =

∫
(𝑑�̃�)𝑒−𝑆eff (�̃�) . (5)

We thus see that 𝑆eff (�̃�) describes a coarse-grained system and each stage of the map corresponds
to the decimation of links.

Such observation has an important implication that the decimation map drives the system away
from the continuum limit, where the HMC becomes inefficient (see figure 2). One can therefore
expect that HMC in the decimated system has smaller autocorrelation than in the original system.
After obtaining configurations in the decimated system, one can use F to supply (or integrate in)
the decimated variables to calculate observables for the original action.
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Figure 2: A qualitative picture describing the resulting flow in the action space. It is likely that the theory
approaches towards the renormalized trajectory (RT), observing that the tunneling rate is not as high as for
the Wilson actions of the larger lattice spacings, at least for the first a few stages. However, it is uncertain
how far this picture holds in the flow and its precise structure is out of the scope of this work.

3. Obtaining the map numerically

In our simple example, there are only two Wilson loops attached to each link 𝑈𝑥,𝜇. Let us
write by 𝜅1,2 the two phase angles of the loops. One can take the basis for the function space to
trivialize𝑈𝑥,𝜇 as:

𝑒𝑚1,𝑚2 ≡ cos(𝑚1𝜅1 + 𝑚2𝜅2) (𝑚1, 𝑚2 ∈ Z). (6)

Note that when 𝑚1 = 𝑚2, they do not depend on 𝑈𝑥,𝜇, and thus 𝑒𝑚,𝑚 (𝑚 ∈ Z) are the zero modes
of the differential operators.

As in [10], we take the gradient flow ansatz:

¤𝑈𝑡 ,𝑥,𝜇𝑈
−1
𝑡 ,𝑥,𝜇 = 𝜕𝐾𝑡 , 𝑈𝑡 ,𝑥,𝜇 ≡ F𝑡 ,𝑥,𝜇 (𝑉), F𝑡=1 = F , (7)

where 𝜕 is the derivative with respect to 𝜙 ≡ log𝑈𝑥,𝜇. Then, one can write down the equation for
𝐾𝑡 by demanding the effective action to decrease linearly in 𝑡. For example, for the first stage:

[−𝜕2 + 𝛽𝑡 (sin 𝜅1 − sin 𝜅2)𝜕]𝐾𝑡 = 𝛽(cos 𝜅1 + cos 𝜅2) +
∑︁
𝑚

𝑒𝑚,𝑚𝑣𝑡 ,𝑚, (8)

For the higher stages, terms with various 𝑚𝑖 appear on both hand sides. By representing the
differential operator in the basis (6), one can numerically solve the linear equation (8) with, e.g.,
CGNE with preconditioning by 𝜕−2 in the space without the zero modes. The zero mode part∑

𝑚 𝑒𝑚,𝑚𝑣𝑡 ,𝑚 can be obtained acting the differential operator to the solution after solving the
equation in the projected space. We find that for 𝛽 ≲ 8.9, the range |𝑚1,2 | ≤ 128 is sufficient (see
figure 5). The inversion takes a few minutes to about a day using GPU depending on the value of 𝛽
and the stage of decimation. The details of the inversion will be described in the subsequent paper.

In practice, we discretize the flow with the Runge-Kutta methods. We here choose the midpoint
integrator. For the map to be bĳective, we ensure that the step size is kept within a bound that can
be derived as in [10]. For the midpoint integrator, given a kernel of the form:

𝐾𝑡 (𝜙) =
∑︁

𝑚1,𝑚2

𝑒𝑚1,𝑚2𝑐𝑡 ,𝑚1,𝑚2 , (9)

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
3
3

Decimation map in 2D for accelerating HMC Nobuyuki Matsumoto

the step size 𝜖 must satisfy:

𝜖𝐵𝑡+𝜖 /2 ·
(
1 + 𝜖𝐵𝑡

2

)
< 1, 𝐵𝑡 ≡

∑︁
𝑚1,𝑚2

(𝑚1 − 𝑚2)2 |𝑐𝑡 ,𝑚1,𝑚2 |. (10)

4. Guided Monte Carlo

The functions 𝑒𝑚,𝑚 are the Wilson loops of the double size winding 𝑚 times. They are
independent of 𝑈𝑥,𝜇, but have different dependencies on the surrounding links. They are the basis
functions for determining the weights in the transformed system. In fact, the integral of the zero
mode over 𝑡 gives the next effective action:

𝑆eff =
∑︁
𝑚

𝑒𝑚,𝑚

∫
𝑑𝑡 𝑣𝑡 ,𝑚. (11)

One can use this knowledge to simplify the force calculation with the help of the guided Monte
Carlo algorithm [19] as below.

The key point of the guided Monte Carlo algorithm is that, as far as the time evolution in the
HMC is symplectic, the detailed balance is exact. However, since the energy conservation is used to
have nonvanishing acceptance in the Metropolis test, it is important that the Hamiltonian associated
to the symplectic integrator is close to the exact one.

We replace the action in the MD Hamiltonian by an approximate one to evade the evaluation
of the gradient of the Jacobian as well as the force propagation. Since the zero modes 𝑣𝑡 ,𝑚 are
calculable at each flow time 𝑡 as a sum of Wilson loops, we can calculate the effective action
directly in the loop space using eq. (11). We use the Simpson’s formula for approximating the right
hand side, which involves only one additional evaluation of 𝐾𝑡 at 𝑡 = 0 to those calculated for the
midpoint integrator. The difference between this approximate action and the effective action of the
discretized flow comes from the error in the midpoint integrator and is 𝑂 (𝜖2), where 𝜖 is the step
size of the flow. Note that, though for a fixed 𝜖 the acceptance rate becomes exponentially small
when enlarging the volume, this effect can be compensated by decreasing the step size 𝜖 of the
trivializing flow just as decreasing the MD step size in the conventional HMC. The cost scaling in
enlarging the volume is therefore power law.

We set the approximate effective action in the trivialized region to be constant in the MD, and
thus we choose the inner links purely randomly. This corresponds to assigning the zero mass in the
MD. Nontrivial updates are performed for the outer remaining links through the Wilson loops in
the large unit. In the Metropolis test, however, since the replacement involves discretization error
of the flow, we need to include all the updated links in the weight function.

In practice, we choose the step size adaptively by making it proportional to the bĳection
bound (10) while the overall scaling is determined to keep the acceptance around 0.8. The adaptively
chosen step size becomes extremely small at large 𝛽, however, for the following two reasons. One
is that the number of relevant basis functions grows rapidly as 𝛽 is increased, which will in turn
decrease the bĳection bound (10) (see also figure 4 on this rapid growth). The other is to control
the acceptance rate in the guided Monte Carlo for increasing the lattice sites. In our calculation,
the second point is the bottleneck. This cost due to the latter point may be circumvented by using
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a higher-order integrator or by switching to calculating the exact force of the effective action as
in [10]. As will be shown in section 5, the exponent of the cost towards the continuum limit can
be decreased with the decimation map, and thus one can expect an acceleration with the latter
algorithm. However, this point needs to be verified with an additional study.

The separation of the inner and outer links corresponds to separating the UV and IR modes in
the system. For simplicity, suppose that the decimation map is obtained without discretization error.
One can then choose the inner links without autocorrelation. However, since the environmental
outer variables are fixed, this fluctuation is only around a fixed background configuration and
depends only on the local links surrounding the trivialized region. It can be thus interpreted as the
UV fluctuation. On the other hand, the update of the outer links is completely insensible to the
inner links, whose dynamics is determined solely by the coarse-grained action. Thus, the global
update of the outer links corresponds to updating the IR modes. By using this separation, we can
investigate which part of the algorithm is responsible for accelerating the algorithm.

5. Results

To enumerate the effectiveness of our approach, we calculate the integrated autocorrelation
time:

𝜏int(O) ≡ 1
2
+
∑︁
𝑖≥1

⟨O0O𝑖⟩
⟨O0O0⟩

, (12)

where O𝑖 ≡ O(𝑈𝑖) is the value of the observable O evaluated with the 𝑖-th configuration 𝑈𝑖 . Our
interest is in the topological charge [20, 21]:

𝑄 ≡ − 1
2𝜋

∑︁
𝑥

𝜅𝑥 , (13)

which is integer-valued. It is assumed to take the principal branch of the logarithm to evaluate 𝜅𝑥
in eq. (2). One can derive analytically that the susceptibility approaches in the continuum limit to:

𝜒𝑄 ≡ ⟨𝑄2⟩
𝑉phys

→ 𝑔2

(2𝜋)2 (𝑎 → 0), (14)

which shows that a vortex (an instanton) appears typically in a volume of (2𝜋)2/𝑔2.
We fix the physical volume to 𝑉phys = 62/𝑔2, which is about the scale of a vortex, and take the

continuum limit 𝑎 → 0 by fixing 𝑔. The trajectory length of the MD is fixed to 1.0 in all simulations.
In the conventional HMC, the MD step size is scaled such that the acceptance rate is around 0.8.
In the guided Hamiltonian simulations, the step size is fixed to 0.05 (i.e., 20 steps); though this
is not optimal, this number is not relevant to the actual cost because the algorithmic overhead is
in the field transformation part. As mentioned in section 4, flow step size of the decimation map
determines the acceptance rate, which is scaled for the acceptance to be around 0.8.

Figure 3 shows the scaling of 𝜏int(𝑄) in the units of Monte Carlo steps and wall clock time. The
number of stages is taken up to four. The computation is performed on CPU without parallelization.
As shown in the left panel, for 𝛽 = 7.1 (16×16 lattice), 𝜏int(𝑄) ≃ 8000 with the conventional HMC
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Figure 3: 𝜏int (𝑄) in Monte Carlo steps (left) and in wall clock time (right). The conventional HMC (blue
solid line) is compared to the guided Monte Carlo with the decimation map up to four stages. In Monte Carlo
step, 𝜏int (𝑄) ≃ 8000 at 𝛽 = 7.1 (16 × 16 lattice) is reduced to 𝜏int (𝑄) ≃ 1. In wall clock, the speedup at
𝛽 = 7.1 is x73 and the decrease of the exponent is by a factor 0.62 with four stages.

is reduced to 𝜏int(𝑄) ≃ 1 with the decimation map in the Monte Carlo unit. In wall clock, we see
x73 speedup at 𝛽 = 7.1, and furthermore, the exponent has decreased with a factor of 0.62.

Concerning the algorithmic overhead, it is the second stage of decimation that is the most costly
(see figure 4). This is simply because the number of relevant basis functions is the largest. Figure 5
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Figure 4: The time consumed to generate a configuration in wall clock. Since the second stage is the most
costly, this part dominates the time even when we include higher stages.

shows the magnitude of the coefficients 𝑐𝑡 ,𝑚1,𝑚2 of eq. (9) for 𝛽 = 8.9 at 𝑡 = 1 (corresponding to
the finest lattice during the transformation). After the first stage, the functions with large 𝑚1 − 𝑚2
become relevant as the effective action contains terms of higher representations, multiply winded
loops. At the later stages, the number of relevant basis functions decreases reflecting that the lattice
is becoming coarse.

Figure 6 shows the time series of 𝑄 at 𝛽 = 7.1 with and without the decimation map. With the
conventional HMC, we observe that𝑄 is varying extremely slowly in large scale; the fast fluctuation
only moves 𝑄 back and forth between two nearby sectors. By implementing the decimation map,
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Figure 5: Density plot of the magnitude of the coefficient function in the flow kernel at 𝑡 = 1 (corresponding
to the finest lattice during the transformation) for 𝛽 = 8.9. The first to fourth stages from top left to right
bottom. The relevant basis functions expand in the𝑚1 −𝑚2 direction after the first stage because the effective
action includes multiply winding Wilson loops. After the second stage, the number of relevant functions
decreases reflecting that the lattice action is becoming coarse.

the fluctuation becomes centered correctly at𝑄 = 0 without visible long-range autocorrelation even
though a single update is taking a noticeable time.

Finally, to study whether it is the UV or IR part of the algorithm that is generating the
acceleration, we separate the inner (UV) and outer (IR) updates by freezing one of them alternatively,
and measure the tunneling rate:

𝑅 ≡ ⟨|𝑄𝑖 −𝑄𝑖+1 |⟩. (15)

Figure 7 shows 𝑅 for each part with various 𝛽. For small 𝛽, the volume of the trivialized region
is large enough to create a vortex. Correspondingly, the inner update has a larger tunneling rate
compared to the outer update. However, as we enlarge 𝛽, the chance of creating a vortex inside the
trivialized region becomes small, and the effectiveness flips.

As discussed in section 4, the outer update is necessary to change the global configuration.
Consequently, even when the topological charge changes in the UV update, the central value of the
fluctuation will not change unless the IR modes are altered. In large 𝛽 theories, since the problem
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Figure 6: Time series of the topological charge in wall clock with the conventional HMC (left) and with the
decimation map with four stages (right) at 𝛽 = 7.1. With the conventional HMC, though𝑄 changes back and
forth frequently within two nearby sectors, it takes a long time to cover all the topological sectors because of
the large autocorrelation. With the decimation map, on the other hand, though each update takes a noticeable
time, it spans all the sectors with a few Monte Carlo steps thanks to the minimal autocorrelation.
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Figure 7: Comparison of the tunneling rate 𝑅 compared between the inner UV update and the outer IR
update with three and four stages of decimation. For small 𝛽, since a vortex can fit into a local trivialized
region easily, the inner update gives larger 𝑅. However, as we increase 𝛽, the link variables start to form a
continuum, and consequently they need to be updated collectively. Accordingly, the outer IR update becomes
more effective at large 𝛽.

is to update the IR modes effectively, mapping the theory to coarse lattice actions by incorporating
renormalization group seems crucial for the speed up.

6. Conclusion and Outlook

We considered the decimation map in the 2D 𝑈 (1) model that can be regarded as a coarse-
graining transformation. With this map, combined with the guided Monte Carlo algorithm, we
showed that the integrated autocorrelation time of the topological charge can be exponentially
improved in the wall clock time. We observe x73 speed up on the 16 × 16 lattice at 𝛽 = 7.1 and the

9



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
3
3

Decimation map in 2D for accelerating HMC Nobuyuki Matsumoto

decrease of the exponent by a factor of 0.62. Our study exemplifies that it is possible to accelerate
the HMC in gauge theories once an appropriate field transformation is constructed. We further
argued that the coarse-graining picture is crucial for accelerating the HMC at large 𝛽.

Towards the application in QCD, there are three points to be addressed: generalization to
non-Abelian groups, generalization to higher dimensions, and inclusion of the fermion; and none
of them is straightforward. However, machinery of solving the linear equation itself can be applied
to non-Abelian cases in principle by parameterizing the function space with the Wilson loops. The
nontrivial relations among the Wilson loops called Mandelstam constraints [22] (see also [18]) will
not be an issue in finding a solution with iterative methods. Generalization to higher dimension
needs work even for the 𝑈 (1) case because the variables correlate through various directions and
the effective action involves loops with complicated shapes. Nevertheless, if we can trivialize
codimension-one hypersurfaces completely, the resulting effective theory will be described by the
double-sized Wilson loops by gauge invariance. However, aiming further to include fermion, it
must be necessary to find an approximation scheme rather than solving the equation exactly while
retaining the renormalization-group picture. Toy 2D models such as the 𝐶𝑃𝑁−1 model and the
Schwinger model may be useful for such investigations. Studies along these lines are in progress
and will be reported elsewhere.
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