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1. Introduction

We would like to calculate observables O:

⟨O⟩ ∝
∫
[D𝑥] O(𝑥) 𝜋(𝑥) (1)

where 𝜋(𝑥) ∝ 𝑒−𝛽𝑆 (𝑥 ) is our target distribution. If these were independent, we could approximate
the integral as ⟨O⟩ ≃ 1

𝑁

∑𝑁
𝑛=1 O(𝑥𝑛) with variance

𝜎2
O =

1
𝑁

Var [O(𝑥)] =⇒ 𝜎O ∝
1
√
𝑁
. (2)

Instead, nearby configurations are correlated, causing us to incur a factor of 𝜏Oint in the variance
expression

𝜎2
O =

𝜏Oint
𝑁

Var [O(𝑥)] . (3)

1.1 Hamiltonian Monte Carlo (HMC)

The typical approach [8, 9] is to use Hamiltonian Monte Carlo (HMC) algorithm for generat-
ing configurations distributed according to our target distribution 𝜋(𝑥). This can be done by
sequentially constructing a chain of states {𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑖 , . . . , 𝑥𝑛}, such that, as 𝑛 → ∞:

Figure 1: Leapfrog update.
{𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑛} ∼ 𝜋(𝑥). (4)

To do this, we begin by introducing a fictitious momentum1

𝑣 ∼ N(0, 1) normally distributed, independent of 𝑥. We
can write the joint distribution 𝜋(𝑥, 𝑣) as

𝜋(𝑥, 𝑣) = 𝜋(𝑥)𝜋(𝑣) ∝ 𝑒−𝑆 (𝑥 )𝑒−
1
2 𝑣

𝑇𝑣 (5)

= 𝑒−[𝑆 (𝑥 )+ 1
2 𝑣

𝑇𝑣] (6)

We can evolve the Hamiltonian dynamics of the ( ¤𝑥, ¤𝑣) =
(𝜕𝑣𝐻,−𝜕𝑥𝐻) system using operators Γ : 𝑣 → 𝑣′ and
Λ : 𝑥 → 𝑥′. Explicitly, for a single update step of the
leapfrog integrator:

�̃� B Γ(𝑥, 𝑣) = 𝑣 − 𝜀

2
𝐹 (𝑥) (7)

𝑥′ B Λ(𝑥, �̃�) = 𝑥 + 𝜀�̃� (8)

𝑣′ B Λ(𝑥′, �̃�) = �̃� − 𝜀

2
𝐹 (𝑥′), (9)

where we’ve written the force term as 𝐹 (𝑥) = 𝜕𝑥𝑆(𝑥). Typically, we build a trajectory of 𝑁LF
leapfrog steps (𝑥0, 𝑣0) → (𝑥1, 𝑣1) → · · · → (𝑥′, 𝑣′), and propose 𝑥′ as the next state in our chain.
This proposal state is then accepted according to the Metropolis-Hastings criteria [25]

𝐴(𝑥′ |𝑥) = min
{
1,

𝜋(𝑥′)
𝜋(𝑥)

����𝜕𝑥′𝜕𝑥

����} . (10)

1Here ∼ means is distributed according to.
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2. Method

Figure 2: Generalized MD update.

=

+

+

Unfortunately, HMC is known to suffer from long
auto-correlations and often struggles with multi-
modal target densities. To combat this, we propose
building on the approach from [8–10]. We introduce
two (invertible) neural networks xNet : (𝑥, 𝑣) →
(𝛼𝑥 , 𝛽𝑥 , 𝛾𝑥), vNet : (𝑥, 𝐹) → (𝛼𝑣 , 𝛽𝑣 , 𝛾𝑣).
Here, (𝛼, 𝛽, 𝛾) are all of the same dimensionality as
𝑥 and 𝑣, and are parameterized by a set of weights
𝜃. These network outputs (𝛼, 𝛽, 𝛾) are then used in a
generalized MD update (as shown in Fig 2) via:

Γ±𝜃 : (𝑥, 𝑣) → (𝑥, 𝑣′), (11)

Λ±𝜃 : (𝑥, 𝑣) → (𝑥′, 𝑣). (12)

where the superscript ± on Γ±
𝜃
, Λ±

𝜃
correspond to the

direction 𝑑 ∼ U(−1, +1) of the update.
To ensure that our proposed update remains reversible,
we split the 𝑥 update into two sub-updates on comple-
mentary subsets (𝑥 = 𝑥𝐴 ∪ 𝑥𝐵):

𝑣′ = Γ±𝜃 (𝑥, 𝑣) (13)
𝑥′ = 𝑥𝐵 + Λ±𝜃 (𝑥𝐴, 𝑣′) (14)
𝑥′′ = 𝑥′𝐴 + Λ

±
𝜃 (𝑥′𝐵, 𝑣′) (15)

𝑣′′ = Γ±𝜃 (𝑥′′, 𝑣′) (16)

2.1 Algorithm

1. input: 𝑥

• Re-sample 𝑣 ∼ N(0, 1)
• Construct initial state 𝜉 B (𝑥, 𝑣)

2. forward: Generate proposal 𝜉′ by passing initial 𝜉 through 𝑁LF leapfrog layers:

𝜉
LF Layer
−−−−−−−→ 𝜉1 → · · · → 𝜉𝑁LF = 𝜉′ B (𝑥′′, 𝑣′′) (17)

• Metropolis-Hastings accept / reject:

𝐴(𝜉′ |𝜉) = min
{
1,

𝜋(𝜉′)
𝜋(𝜉) |J (𝜉

′, 𝜉) |
}
, (18)

where |J (𝜉′, 𝜉) | is the determinant of the Jacobian.

3. backward: (if training)

3
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• Evaluate the loss function L(𝜉′, 𝜉) and back propagate

4. return: 𝑥𝑖+1

• Evaluate MH criteria (Eq. 18) and return accepted config:

𝑥𝑖+1 ←
{
𝑥′′ w/ prob. 𝐴(𝜉′ |𝜉)
𝑥 w/ prob. 1 − 𝐴(𝜉′ |𝜉)

(19)

3. Lattice Gauge Theories

3.1 2D 𝑈 (1) Model

Figure 3: 𝛿𝑄 → 0 with increasing 𝛽 for the
2D 𝑈 (1) model. Image from [9].

We build upon the approach originally introduced
in [17], which was successfully applied to the 2D
𝑈 (1) lattice gauge model in [8–10]. In particular, we
are interested in measuring the (scalar) topological
charge 𝑄 ∈ Z on the lattice. Since different lattice
configurations with the same value of 𝑄 are related
by a gauge transformation, they do not meaningfully
contribute to our statistics.
Because of this, we would like to generate configura-
tions from different topological sectors (characterized
by different values of 𝑄) to reduce uncertainty in our
statistical estimates. By repeating this procedure at
increasing spatial resolution2 (𝛽 ∝ 1/𝑎), we are able
to extrapolate our estimates to the continuum limit
where they can be compared with experimental mea-
surements. Current approaches such as HMC are
known to suffer from auto-correlation times which
scale exponentially in this limit, significantly limiting
their effectiveness. This phenomenon can be seen in
Fig 3, where fluctuations in the topological charge
between sequential configurations (the tunneling rate)
𝛿𝑄 = |𝑄𝑖+1 −𝑄𝑖 | decreases as 𝛽 = 2→ 3→ · · · , and disappear completely (𝑄 = const.) by 𝛽 = 7.

3.1.1 Results

Results for the 2D 𝑈 (1) model trained at 𝛽 = 4 in ≃ 25 minutes on a single NVIDIA A100 GPU,
using l2hmc-qcd. We provide the full Jupyter notebook containing the results in Fig 4.

3.2 4D 𝑆𝑈 (3) Model

We would like to generalize this approach to handle 4D 𝑆𝑈 (3) link variables 𝑈𝜇 (𝑛) ∈ 𝑆𝑈 (3):

𝑈𝜇 (𝑛) = exp
[
𝑖𝜔𝑘

𝜇 (𝑛)𝜆𝑘
]

(20)

2Here 𝑎 is the lattice spacing.
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(a) 𝛿𝑄 for trained model (red) vs HMC (blue). (b) Loss (blue) and 𝛿𝑄 (red) during training

(c) |J | vs LF step (trained) (d) 𝐻 vs LF step (trained) (e) 𝐻 vs LF step (HMC)

Figure 4: Results from trained 2D 𝑈 (1) model at 𝛽 = 4. In 4d we see the energy 𝐻 increasing towards the
middle of the trajectory, resulting in improved tunneling rate (larger 𝛿𝑄) in 4a. Jupyter notebook.

where 𝜔𝑘
𝜇 (𝑛) ∈ R and 𝜆𝑘 are the generators of 𝑆𝑈 (3). We consider the standard Wilson gauge

action

𝑆𝐺 = − 𝛽
6

∑︁
Tr

[
𝑈𝜇𝜈 (𝑛) +𝑈†𝜇𝜈 (𝑛)

]
, where (21)

𝑈𝜇𝜈 (𝑛) = 𝑈𝜇 (𝑛)𝑈𝜈 (𝑛 + �̂�)𝑈†𝜇 (𝑛 + �̂�)𝑈†𝜈 (𝑛). (22)

3.2.1 Generic MD Updates

As before, we introduce momenta 𝑃𝜇 (𝑛) = 𝑃𝑘
𝜇 (𝑛)𝜆𝑘 conjugate to the real fields 𝜔𝑘

𝜇 (𝑛). We can
write the Hamiltonian as

𝐻 [𝑃,𝑈] = 1
2
𝑃2 + 𝑆𝐺 [𝑈] =⇒

𝑑𝜔𝑘

𝑑𝑡
=

𝜕𝐻

𝜕𝑃𝑘
,

𝑑𝑃𝑘

𝑑𝑡
= − 𝜕𝐻

𝜕𝜔𝑘
. (23)

To update the gauge field 𝑈𝜇 = 𝑒𝑖𝜔
𝑘
𝜇𝜆

𝑘

, write
𝑑𝜔𝑘

𝑑𝑡
𝜆𝑘 = 𝑃𝑘𝜆𝑘 and discretize with step size 𝜀:

−𝑖 log𝑈 (𝜀) = −𝑖 log𝑈 (0) + 𝜀𝑃(0) (24)
𝑈 (𝜀) = 𝑒𝑖 𝜀𝑃 (0)𝑈 (0) =⇒ (25)

Λ : 𝑈 → 𝑈′ = 𝑒𝑖 𝜀𝑃𝑈. (26)

Similarly for the momentum update
𝑑𝑃𝑘

𝑑𝑡
= − 𝜕𝐻

𝜕𝜔𝑘
,

𝑃(𝜀) = 𝑃(0) − 𝜀𝐹 [𝑈] (27)

Γ : 𝑃→ 𝑃′ = 𝑃 − 𝜀

2
𝐹 [𝑈] (28)

where 𝐹 [𝑈] is the force term (see A.1).

5

https://saforem2.github.io/l2hmc-qcd/qmd/l2hmc-2dU1/l2hmc-2dU1.html


P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
3
6

MLMC: Machine Learning Monte Carlo for Lattice Gauge Theory Sam Foreman

3.2.2 Generalized MD Update

As in Sec.2, we introduce pNet: (𝑈, 𝐹) → (𝛼𝑃, 𝛽𝑃, 𝛾𝑃) and uNet: (𝑈, 𝑃) → ( · , 𝛽𝑈 , 𝛾𝑈). Note
that we have omitted the 𝑈 scaling term (𝛼𝑈) term in this update since 𝑈 ∈ 𝑆𝑈 (3). In terms of
the generalized update operators,

Γ±𝜃 : (𝑈, 𝑃)
(𝛼𝑃 ,𝛽𝑃 ,𝛾𝑃 )−−−−−−−−−−→ (𝑈, 𝑃′) (29)

Λ±𝜃 : (𝑈, 𝑃)
( ·, 𝛽𝑈 ,𝛾𝑈 )−−−−−−−−−→ (𝑈′, 𝑃) (30)

we can write the complete update:

𝑃′ = Γ±𝜃 (𝑈, 𝑃) (31)
𝑈′ = 𝑈𝐵 + Λ±𝜃 (𝑈𝐴, 𝑃

′) (32)
𝑈′′ = 𝑈′𝐴 + Λ

±
𝜃 (𝑈′𝐵, 𝑃′) (33)

𝑃′′ = Γ±𝜃 (𝑈′′, 𝑃′) (34)

Momentum Update
In this case, our pNet : (𝑈, 𝐹) = (𝛼𝑃, 𝛽𝑃, 𝛾𝑃). We can write the generalized momentum update
as 𝑃± B Γ±

𝜃
(𝑈, 𝑃), where3:

1. forward, (+):
𝑃+ B Γ+𝜃 (𝑈, 𝑃) = 𝑃 · 𝑒 𝜀

2 𝛼𝑃 − 𝜀

2
[
𝐹 · 𝑒𝜀𝛽𝑃 + 𝛾𝑃

]
(35)

2. backward, (−):

𝑃− B Γ−𝜃 (𝑈, 𝑃) = 𝑒−
𝜀
2 𝛼𝑃 ·

{
𝑃 + 𝜀

2
[
𝐹 · 𝑒𝜀𝛽𝑃 + 𝛾𝑃

]}
. (36)

By introducing the above modifications, we incur a factor of log
���𝜕𝑃±𝜕𝑃

��� = ± 𝜀
2
∑
𝛼𝑃 in the Metropo-

lis Hastings accept / reject 𝐴(𝑈′ |𝑈), and the sum is taken over the full trajectory.
Link Update
Similarly to the momentum update, the outputs from our uNet : (𝑈, 𝑃) → ( · , 𝛽𝑈 , 𝛾𝑈) are used in
the generalized link update 𝑈± B Λ±

𝜃
(𝑈, 𝑃) = 𝑒𝑖 𝜀�̃�

±
𝑈 (where �̃�± ∈ su(3)). Explicitly:

1. forward, (+):

𝑈+ B Λ+𝜃 (𝑈, 𝑃) = 𝑒𝑖 𝜀�̃�
+
𝑈, with �̃�+ =

[
𝑃 · 𝑒𝜀𝛽𝑈 + 𝛾𝑈

]
(37)

2. backward, (−):

𝑈− B Λ−𝜃 (𝑈, 𝑃) = 𝑒𝑖 𝜀�̃�
−
𝑈, with �̃�− = 𝑒−𝜀𝛽𝑈 · [𝑃 − 𝛾𝑈] (38)

3Note that
(
Γ+

)−1
= Γ− , i.e. Γ+ [Γ− (𝑈, 𝐹)] = Γ−

[
Γ+ (𝑈, 𝐹)

]
= (𝑈, 𝐹), and similarly for Λ±

6
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3.3 Training

We construct a loss function using the expected squared charge difference

L𝜃 (𝑈,𝑈′) = E
[
𝐴(𝑈′ |𝑈) · 𝛿2

𝑄 (𝑈,𝑈′)
]
, (39)

where 𝛿2
𝑄
(𝑈,𝑈′) = |𝑄′ − 𝑄 |2 is the squared topological charge (see A.2) difference between the

initial and proposal configurations.

3.4 Results

For the trained 2D 𝑈 (1) model (Fig 4), we see in Fig 4c that |J | increases towards the middle of
the trajectory, allowing for the sampler to overcome the large energy barriers between different
topological sectors. This results in a greater tunneling rate (𝛿𝑄) when compared to generic HMC.
Identical behavior is observed after a short training run for the 4D 𝑆𝑈 (3) model, as shown in
Fig 5.

(a) 100 train steps (b) 500 train steps (c) 1000 train steps

Figure 5: Evolution of |J | during the first 1000 training iterations for the 4D 𝑆𝑈 (3) model.

4. Conclusion

In this work we’ve introduced a generalized MD update for generating 4D 𝑆𝑈 (3) gauge config-
urations that can be trained to improve sampling efficiency. Note that this is a relatively simple
proof of concept demonstrating how to construct such a sampler. In a future work we plan to fur-
ther investigate (and quantify) the cost / benefit when compared to alternative approaches such as
traditional HMC and purely generative (OT / KL-Divergence [2–4, 15]) based approaches.
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A. Appendix

A.1 Force Term

We can write the force term as

𝐹 = − 1
𝜆2

∑︁
𝑘

𝜆𝑘 Tr
[
𝑖

(
𝑈𝐴 − 𝐴†𝑈†

)
𝜆𝑘

]
(40)

where 𝐴 is the sum over staples

𝐴 =
∑︁
𝜇≠𝜈

𝑈𝜇 (𝑥 + �̂�)𝑈†𝜇 (𝑥 + �̂�)𝑈†𝜈 (𝑥) (41)

+
∑︁
𝜇≠𝜈

𝑈−𝜈 (𝑥 + �̂�)𝑈†𝜇 (𝑥 − �̂�)𝑈†−𝜈 (𝑥). (42)

Since, 𝑖
(
𝑈𝐴 − 𝐴†𝑈†

)
∈ su(3), we can write it in terms of the generators 𝜆𝑘 as∑︁

𝑘

𝜆𝑘 Tr

[
𝜆𝑘

∑︁
𝑗

𝑐 𝑗 𝜆
𝑗

]
=
∑︁
𝑘

∑︁
𝑗

𝑐 𝑗 𝜆
𝑗 Tr

[
𝜆𝑘 𝜆 𝑗

]
(43)

=
1
2

∑︁
𝑘

∑︁
𝑗

𝑐 𝑗 𝑡
𝑘 𝛿 𝑗𝑘 (44)

=
1
2

∑︁
𝑘

𝑐𝑘 𝑡
𝑘 (45)

consequently, we can simplify the force term as

𝐹 [𝑈] = − 1
2𝑔2 𝑖

(
𝑈𝐴 − 𝐴†𝑈†

)
. (46)
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A.2 Topological Charge 𝑄

In lattice field theory, the topological charge 𝑄 is defined as the 4D integral over spacetime of the
topological charge density 𝑞. In the continuum,

𝑄 =

∫
𝑑4𝑥𝑞(𝑥), where (47)

𝑞(𝑥) = 1
32𝜋2 𝜖𝜇𝜈𝜌𝜆Tr

{
𝐹𝜇𝜈𝐹𝜌𝜆

}
(48)

On the lattice, we choose a discretization4 𝑞𝐿 (𝑥) such that 𝑄 = 𝑎4 ∑
𝑥 𝑞𝐿 (𝑥). The most obvious

discretization of 𝑞𝐿 uses the 1 × 1 plaquette 𝑃𝜇𝜈 (𝑥), and can be written as

𝑞
plaq
𝐿
(𝑥) = 1

32𝜋2 𝜖𝜇𝜈𝜌𝜆Tr
{
𝑃𝜇𝜈 (𝑥)𝑃𝜌𝜆(𝑥)

}
(49)

this has the advantage of being computationally inexpensive, but leads to lattice artifacts of order
O(𝑎2).

4We are free to choose a specific discretization as long as it gives the right continuum limit
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