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1. Introduction

Disconnected quark loop operators on the lattice come in form of a trace,

⟨𝜓̄Θ𝜓⟩ = −𝑇𝑟 (Θ𝑀−1). (1)

This is a challenging problem that is generally solved with Monte Carlo or noise sampling. We give
a new method that uses multilevel Monte Carlo with different degree polynomials used to form the
levels. It also incorporates eigenvalue deflation in various crucial ways. We show that this approach
can significantly improve computation compared to simple Monte Carlo in which 𝑇𝑟 (Θ𝑀−1) is
approximated with a Monte Carlo method using 𝑁 Hutchinson samples: 1

𝑁

∑𝑁
𝑖=1 𝜂

†
𝑖
Θ𝑀−1𝜂𝑖 [1].

We will use 𝜂𝑖 as a vector of 𝑍 (4) noise, but other choices are possible. A large system of linear
equations 𝑀𝑥𝑖 = 𝜂𝑖 must be solved for each sampling, and this is the main expense of the method.

2. Subtraction Methods

Subtraction methods are needed in order to reduce the variance of noisy calculations. The
noise subtracted trace estimator is

𝑇𝑟 (Θ𝑀−1) = 1
𝑁

𝑁∑︁
𝑛=1

𝜂 (𝑛)†Θ
(
𝑀−1 − 𝑀̃−1

)
𝜂 (𝑛) + 𝑇𝑟 (Θ𝑀̃−1), (2)

where 𝑀−1 is the inverse quark matrix and 𝑀̃−1 is the subtracted matrix which reduces the
variance[2]. The second term in Equation (2) is a trace correction term which does not affect the
variance. This forms the basis for all of our subtraction methods, each of which involve a different
approximation, 𝑀̃−1, for the inverse of the Wilson-Dirac matrix 𝑀−1.

3. The GMRES Polynomial

We use a polynomial, 𝜋(𝑀), formed from the GMRES algorithm[3]. It is given by

𝜋(𝑀) =
𝑑∏
𝑖=1

(
1 − 𝑀

𝜃𝑖

)
, (3)

where 𝜃1, 𝜃2, . . . , 𝜃𝑑 are the Leja ordered [4], harmonic Ritz values obtained from a single cycle
of GMRES(𝑑), and 𝑑 is the desired degree of the GMRES polynomial. This method of finding
the polynomial is much more stable than using the normal equations[5], allowing for high degree
polynomials to be formed.

The GMRES polynomial 𝑝(𝑀) of degree 𝑑−1 related to 𝜋(𝑀) is given by 𝜋(𝑀) = 1−𝑀 𝑝(𝑀).
A backwards solve shows it can be expressed as

𝑝(𝑀) =
𝑑∑︁

𝑘=1
𝑢𝑘 , 𝑢𝑘 =

𝑀

𝜃𝑘

(
1 − 𝑀

𝜃1

) (
1 − 𝑀

𝜃2

)
· · ·

(
1 − 𝑀

𝜃𝑘−1

)
, (4)

where 𝑑 is the order of the polynomial 𝜋(𝑀). We only need to run a single cycle of GMRES(𝑑) in
order to extract 𝑑 harmonic Ritz values. These are then Leja ordered for numerical stability. For
subtraction, we make the assignment 𝑀̃−1 ≡ 𝑝(𝑀).
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4. Relative Variance

In order to monitor the reduction in variance of each method over that of no subtraction (NS),
we define the relative variance as

𝜎̄2
𝑅 ≡

𝜎̄2
𝐴

𝜎̄2
𝑁𝑆

, (5)

where 𝜎̄2
𝐴

is the variance obtained from a particular subtraction method 𝐴 averaged over the
configurations, and 𝜎̄2

𝑁𝑆
is the variance of the trace estimator with no subtraction averaged over all

configurations.
The standard relative variance results are often dominated by a single configuration and have

large fluctuations. Log-averaged relative variance results, although not unbiased, have significantly
reduced errors and are far easier for other numerical groups to make comparisons to. Thus, we also
define a base-10 log-averaged relative variance using the geometric mean [6] as

𝜎̄2
𝑅,𝑙𝑜𝑔 ≡ 10𝜌̄

2
𝐴
−𝜌̄2

𝑁𝑆 , (6)

where 𝜌̄2
𝐴
= 1

𝑁

∑𝑁
𝑗=1 log10 [(𝜎2

𝐴
) ( 𝑗 ) ] (𝜌̄2

𝑁𝑆
defined similarly), (𝜎2

𝐴
) ( 𝑗 ) is the variance obtained for

configuration 𝑗 for a particular method, and 𝑁 is the number of configurations.
We now turn our attention to considering the polynomial degree dependence of our polynomial

noise subtraction methods. We first examined both the standard and log-averaged relative variance
for several polynomial degrees on different lattice volumes[7]. Here we consider the scalar operator
but with four quenched lattices of volumes 43 × 4, 83 × 8, 123 × 16 and 243 × 32 with 𝛽 =

6.0 configurations and hopping parameter 𝜅 = 0.1570 ≈ 𝜅𝑐𝑟𝑖𝑡 using a total of 10 thermalized
configurations for each lattice volume. The three smaller lattices used 𝑁 = 10 unpartitioned 𝑍 (4)
noise vectors for the Monte Carlo while the largest used 𝑁 = 100. 𝑁 = 100 was sufficient to reveal
the relative variance behavior for the 243 ×32 lattices at approximately at the same relative variance
error level as the 123 × 16 lattices.

Figure 1 shows the log-averaged standard relative variance of the scalar operator versus the
polynomial degree for each of the four lattice volumes that we used. Error bars are indicated by
the shaded regions. Note the approximate exponential falloff in the relative variances for larger
polynomial degrees for either figure. We also see that the increase in lattice volume requires a higher
polynomial degree to achieve the same variance reduction performance. This polynomial degree
can become impractically high for larger lattices. To increase the polynomial degree further, one
would need to reduce the expense of computing such high degree polynomials as the single cycle of
GMRES(𝑑 + 1) involved in forming the subtraction polynomial of degree 𝑑 becomes expensive due
to the orthogonalization costs of the Arnoldi iteration. As will be seen shortly, double polynomials
as discussed in Refs. [8] and [3], and described in the next section can be used to combat this.

5. Reducing Costs Through Double Polynomials

The degree of the subtraction polynomials are dependent on the size of the Krylov subspace
used to form them. Since the GMRES algorithm is based on the Arnoldi iteration, forming large
subspaces to produce high degree subtraction polynomials can increase the orthogonalization and
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Figure 1: Log-averaged standard relative variance of the scalar operator using polynomial subtraction against
the degree of the subtraction polynomial. Lattice volumes 43 × 4, 83 × 8, 123 × 32, and 243 × 32 are shown,
each averaged over 10 quenched configurations at 𝛽 = 6.0 and 𝜅 = 0.1570.

memory costs considerably. As a cost-saving measure, we may make use of double polynomials to
avoid the large orthogonalization and memory costs of the Arnoldi iteration. We start this section
by first outlining double polynomials in the context of polynomial preconditioning as they were
originally [8] used, and then we state how they can be used in noise subtraction.

In polynomial preconditioning, we use a polynomial preconditioner 𝑝𝑖𝑛 (𝑀) on the system 𝑀 ,
yielding the polynomial preconditioned system 𝜙𝑖𝑛 (𝑀) ≡ 𝑀𝑝𝑖𝑛 (𝑀) as

𝜙𝑖𝑛 (𝑀)𝑦 = 𝑏, (7)

where the solution is 𝑥 = 𝑝𝑖𝑛 (𝑀)𝑦. If we then polynomial precondition the system a second time
using the preconditioner 𝑝𝑜𝑢𝑡 (𝜙𝑖𝑛 (𝑀)), we will have a double polynomial preconditioned system

𝜙𝑜𝑢𝑡 (𝜙𝑖𝑛 (𝑀))𝑧 ≡ 𝜙𝑖𝑛 (𝑀)𝑝𝑜𝑢𝑡 (𝜙𝑖𝑛 (𝑀))𝑧 = 𝑏, (8)

where the solution is now 𝑥 = 𝑝𝑖𝑛 (𝑀)𝑝𝑜𝑢𝑡 (𝜙𝑖𝑛 (𝑀))𝑧. If we now consider

𝜙𝑜𝑢𝑡 (𝜙𝑖𝑛 (𝑀)) = 𝑀𝑝𝑖𝑛 (𝑀)𝑝𝑜𝑢𝑡 (𝜙𝑖𝑛 (𝑀)), (9)

we see that performing double polynomial preconditioning can also be thought of as applying a
single polynomial preconditioner 𝑝𝑑𝑜𝑢𝑏𝑙𝑒 (𝑀) ≡ 𝑝𝑖𝑛 (𝑀)𝑝𝑜𝑢𝑡 (𝜙𝑖𝑛 (𝑀)) to the original system 𝑀 .

To form such a double polynomial, we perform a single cycle of GMRES(𝑑𝑖𝑛 + 1) on 𝑀

to obtain 𝑑𝑖𝑛 + 1 Leja ordered, harmonic Ritz values for 𝑀 , and then perform a single cycle of
GMRES(𝑑𝑜𝑢𝑡 + 1) on 𝜙𝑖𝑛 (𝑀) to obtain 𝑑𝑜𝑢𝑡 + 1 Leja ordered, harmonic Ritz values for 𝜙𝑖𝑛 (𝑀).
Note that the latter single cycle of GMRES(𝑑𝑜𝑢𝑡 + 1) on 𝜙𝑖𝑛 (𝑀) can alternatively be thought of as
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performing a single cycle of polynomial preconditioned GMRES or PP-GMRES(𝑑𝑜𝑢𝑡 + 1) on 𝑀

to form the 𝑑𝑜𝑢𝑡 + 1 Leja ordered, harmonic Ritz values. From these, one can form polynomials
𝑝𝑖𝑛 (𝑀) and 𝑝𝑜𝑢𝑡 (𝜙𝑖𝑛 (𝑀)) of degrees 𝑑𝑖𝑛 and 𝑑𝑜𝑢𝑡 , respectively, using the algorithm discussed in
Ref. [8] to obtain a double polynomial of degree 𝑑𝑑𝑜𝑢𝑏𝑙𝑒 = (𝑑𝑖𝑛 + 1) ∗ (𝑑𝑜𝑢𝑡 + 1) − 1.

In this way, we may form two low-degree polynomials 𝑝𝑖𝑛 (𝑀) and 𝑝𝑜𝑢𝑡 (𝜙𝑖𝑛 (𝑀)) using smaller
Krylov subspaces to achieve an effective high degree polynomial, thus avoiding the large Krylov
subspaces formed by the Arnoldi iteration of GMRES applied solely on 𝑀 . In the context of the
multipolynomial method described in the next section, we make use of this double polynomial for
subtraction purposes, 𝑀̃−1

𝑝𝑜𝑙𝑦
≡ 𝑝𝑑𝑜𝑢𝑏𝑙𝑒 (𝑀), at the highest level in our multilevel Monte Carlo.

6. Multipolynomial Monte Carlo

Multilevel Monte Carlo [9, 10] uses different levels of approximation to the problem being
solved in order to reduce the variance. It creates several independent Monte Carlo estimations with
each except the last one having differences between levels. The last has a Monte Carlo for the least
accurate approximation to the original problem. Essentially, much of the Monte Carlo sampling
is shifted from the original problem to sampling with the approximations that are cheaper to use.
Multilevel Monte Carlo has been applied in QCD [11, 12]. Also, Ref. [13] has levels with different
size multigrid matrices.

In [7] it is suggested to use a high degree polynomial of 𝑀 to approximate 𝑀−1, and in Ref. [14]
to turn this into a multilevel Monte Carlo method. Consider

𝑇𝑟 (𝑀−1) = 𝑇𝑟 (𝑀−1 − 𝑝1(𝑀)) + 𝑇𝑟 (𝑝1(𝑀)). (10)

The two traces on the right can be computed independently with Monte Carlo sampling. Or if 𝑝1
is low degree, the second trace can be computed exactly with probing [15, 16]. If 𝑝1 is a good
approximation to 𝑀−1, the variance is greatly reduced for the 𝑇𝑟 (𝑀−1 − 𝑝1(𝑀)) part of the Monte
Carlo. Thus very few samples are needed for this part of the trace estimate. Each sample is expensive
however, needing solution of linear equations and application of a high degree polynomial. We use
the stable high degree polynomials that are generated by the GMRES algorithm in [3, 8]. However,
Equation (10) cannot easily be used with a high degree polynomial because finding 𝑇𝑟 (𝑝1(𝑀))
would require a Monte Carlo approach that has variance similar to that of the original problem of
𝑇𝑟 (𝑀−1). It does gain in that implementing 𝑝1(𝑀) times a vector is generally less expensive than
solving the linear equations needed to multiply 𝑀−1 times a vector.

To reduce the Monte Carlo cost for 𝑇𝑟 (𝑝1(𝑀)) we suggest approximating 𝑝1 with a lower
degree polynomial, say 𝑝2. This is done by making 𝑝2(𝑀) another approximation to 𝑀−1 and thus
also an approximation to 𝑝1(𝑀). The next equation shows how 𝑝2 is used so that there are two
Monte Carlo’s along with the problem of finding the trace of 𝑝2(𝑀):

𝑇𝑟 (𝑀−1) = 𝑇𝑟 (𝑀−1 − 𝑝1(𝑀)) + 𝑇𝑟 (𝑝1(𝑀) − 𝑝2(𝑀)) + 𝑇𝑟 (𝑝2(𝑀)).

This is a polynomial version of multilevel Monte Carlo [9, 10, 17]. In [18], multiple Chebyshev
polynomials are used in a multilevel Monte Carlo method, however only for symmetric matrices
and not for computing the trace of an inverse. As mentioned above, we instead use GMRES
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polynomials for our non-Hermitian complex QCD matrices. Our approach is perhaps easier to set
up than a multilevel Monte Carlo method that uses multigrid matrices [13] since it does not need
the development of the matrices. However, there are also complications for our new approach such
as the need of a high degree polynomial 𝑝1 and the need for eigenvalue deflation.

For each lower order polynomial 𝑝𝑖 we want 𝑝𝑖 (𝑀) ≈ 𝑀−1. These polynomials can be
generated from a run of GMRES. For example, for a degree 100 polynomial 𝑝(𝛼), stop GMRES at
iteration 101. We call the GMRES residual polynomial 𝜋(𝛼). It is degree 101. This polynomial in
𝛼 can be written as 𝜋(𝛼) = 1− 𝛼𝑝(𝛼), where 𝑝(𝛼) is the polynomial that approximates the inverse
of 𝑀 . In fact, 𝜋(0) = 1 and 𝜋(𝛼) ≈ 0 over the spectrum of 𝑀 , once GMRES has run far enough.
So 𝑝(𝛼) ≈ 1/𝛼 over the spectrum and thus 𝑝(𝑀) ≈ 𝑀−1.

There can be any number of levels in a multilevel Monte Carlo scheme, however there is
cost for extra levels because then each individual Monte Carlo sampling must be estimated more
accurately. We will only go as high as using three polynomials which gives four trace calculations.
Let the polynomials 𝑝1, 𝑝2 and 𝑝3 have degrees be 𝑑1 > 𝑑2 > 𝑑3. The multilevel Monte Carlo with
polynomials for the different levels, which we refer to as Multipolynomial Monte Carlo, uses this
formula:

𝑇𝑟 (𝑀−1) = 𝑇𝑟 (𝑀−1 − 𝑝1(𝑀)) + 𝑇𝑟 (𝑝1(𝑀) − 𝑝2(𝑀))+
𝑇𝑟 (𝑝2(𝑀) − 𝑝3(𝑀)) + 𝑇𝑟 (𝑝3(𝑀)). (11)

The first three trace computations on the right of Equation (11) can be performed with Hutchinson
Monte Carlo trace estimation. Here we do the last one exactly with probing.

7. Deflation for the Monte Carlo

Deflation of eigenvalues is used in three different ways in our method. There is deflation in the
Monte Carlos levels that have differences between polynomials, deflation in the solution of linear
equations, and in the development of a deflated double polynomial. Here we discuss the Monte
Carlo level deflation. The more complete discussion is in Ref. [14].

We use polynomial preconditioned Arnoldi method (PP-Arnoldi) [8] to deflate eigenvalues.
In some of the tests, we determine the stopping point by monitoring the relative residual of
the corresponding polynomial preconditioned GMRES. Multipolynomial Monte Carlo can reduce
expense due to moving much of the noise sampling to the cheaper Monte Carlo parts such as
𝑇𝑟 (𝑝2(𝑀) − 𝑝3(𝑀)). However, the improvement due to having more levels may not be dramatic
due to the increased number of samples needed for more Monte Carlos with more demanding error
tolerances. Needed for a big improvement is deflation in the Monte Carlos that have the difference
between polynomials. We find eigenvalues 𝜆𝑖 and corresponding right and left eigenvectors 𝑧𝑖 and
𝑢𝑖 , respectively. Then the Monte Carlos for 𝑇𝑟 (𝑝1(𝑀) − 𝑝2(𝑀)) and 𝑇𝑟 (𝑝2(𝑀) − 𝑝3(𝑀)) have
deflation applied. For the first of these, this is

𝑇𝑟

(
𝑝1(𝑀) − 𝑝2(𝑀) −

∑︁
𝑖

(𝑝1(𝜆𝑖) − 𝑝2(𝜆𝑖))𝑧𝑖𝑢∗𝑖
)
.

The deflation reduces the variance for Monte Carlo sampling. We correct for the deflated part by
finding its trace exactly using that the trace of 𝑧𝑖𝑢∗𝑖 is the inner product between the vectors.

6
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Note that when simply doing a Monte Carlo for 𝑇𝑟 (𝑀−1), deflating eigenvalues is not very
effective because of non-normality effects. For a non-normal matrix, there can even be an increase
in the norm of the inverse as some spectral components are removed. The norm of 𝑀−1 will not
increase if singular value decomposition components are instead removed, hence they have been
previously used [19–23]. Nevertheless, we remove eigenvalue components, because the singular
values and vectors of a polynomial of 𝑀 are not necessarily related to those of 𝑀 . Also, eigenvalues
work well in our context because the polynomials all approximate 𝑀−1 but differ mostly at the small
eigenvalues that we are deflating. So removing these components significantly reduces the variance.

8. Algorithm and Testing

We test with 10 quenched matrices from 244 configurations using the scalar operator. The
desired error is set at 𝜖 = 0.0005 ∗ 244. We use two versions of the multpolynomial approach.
Both are with three polynomials. The first polynomial is from deflated PP(50)-GMRES solved
to residual norm below 10−5. This gives 𝑝1(𝑀) that is a very accurate approximation to 𝑀−1,
so the Monte Carlo for 𝑇𝑟 (𝑀−1 − 𝑝1(𝑀)) requires only two noises and achieves far more than
the requested accuracy. The second and third polynomials are degree 200 and degree 4. The
standard error for the second Monte Carlo is checked after three noises and then rechecked after
every three. The third Monte Carlo is checked after six noises and then every third thereafter. The
first test computes the eigenvectors by running PP(50)-Arnoldi until the corresponding GMRES
relative residual norm goes below 10−12. From the subspace thus generated, 30 right eigenvectors
are computed corresponding to the smallest Ritz vectors, the left eigenvectors are found and the
eigenvalue is accepted if residual norms are below 10−3. Ritz values are identified as real if the
imaginary parts are below 2 ∗ 10−4. An average of 22.4 small eigenvalues are used. The time and
matrix-vector products for computing 𝑇𝑟 (𝑝3(𝑀)) with probing are included in the table (the time
averages 0.45 hours). The time for the whole multipolynomial process varies greatly from 3.9 hours
up to 16 hours per configuration. This is because the Monte Carlo deflation is sometimes more
effective than for other cases. The number of noise vectors needed for the second Monte Carlo
varies from 3 to 66, and every noise vector is expensive because it requires multiplication by the
high-degree polynomial 𝑝1 (and by 𝑝2).

Next, we check whether it is worth spending more effort developing the eigenvalues for
deflation. We use a degree 69 polynomial for 𝑝𝑖𝑛, and run PP(70)-Arnoldi for 150 iterations
(stopping at that set point instead of at a GMRES residual level). This takes a total of 10,500
matrix-vector products which compares to an average of 6250 matrix-vector products used just
above when going to 10−12. (This varies considerably for the 10 matrices, between 4850 and 7000).
Next, the 60 smallest Ritz values and vectors are tested for accuracy. An average of 52.9 approximate
eigenvalues are accepted. Most of them are very accurate with residual norms around 10−15. This
makes the decisions more clear-cut for determining which eigenvalues to use for deflation. We call
the procedure “extra deflation". The overall time goes down for all tests even though more time is
spent on the initial steps of finding eigenvalues and polynomials before the actual Monte Carlos.

We show a comparison of the two Multipolynomial Monte Carlo tests along with Hutchinson
in Table 1 with averaging over 10 configurations. Linear equations are solved for Hutchinson using
PP(70)-GMRES with extra deflation. The time is reduced by a factor of more than six with the extra

7
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Table 1: Trace results for 244 lattices with error tolerance 0.0005 ∗ 244. Compare Hutchinson with the
Multipolynomial Method. We average with 10 configurations.

Method Noise vectors Time MVP’s
Hutch., defl. PP(70)-GMRES 188 19.6 hours 2.02 ∗ 105

3 Poly’s, 10−12 for deflation 2, 17.1, 101 6.84 hours 6.68 ∗ 104

3 Poly’s, extra deflation 2, 3, 24.9 3.07 hours 2.80 ∗ 104

deflation version of the multipolynomial method. We note that the Hutchinson method takes an
average of 19.6 hours, but this would take much longer if polynomial preconditioning and deflation
were not used.

9. Conclusions

We have proposed a new approach to computing the trace of the inverse of a large QCD matrix.
It consists of a multilevel Monte Carlo method with different degree polynomials. The polynomials
give approximations of different accuracy to the inverse of the matrix. The lower degree polynomials
are from GMRES and the highest degree polynomial is from polynomial preconditioned GMRES.

This is the first use of polynomials for multilevel Monte Carlo with nonsymmetric matrices. For
this method to be effective, it is essential to deflate eigenvalues from the Monte Carlo steps that have
a difference of two polynomials. This deflation is also new, as is the use of a deflated polynomial
to lower the degree of the highest degree polynomial. Also important to the method is that this
highest degree polynomial is a double polynomial with much less orthogonalization expense needed
to generate it. Also implemented is a deflated version of polynomial preconditioned GMRES that
is very efficient and is new to QCD calculations. Computation of eigenvalues and eigenvectors is
done with a polynomial preconditioned Arnoldi method that makes deflation much more practical.
Putting the pieces together gives a multipolynomial Monte Carlo method that is very efficient.

We plan future work on this method, including automatic optimization of the cost function [10]
as well as using nonsymmetric Lanczos to develop the polynomials and to compute eigenvalues.
This will likely give a lower degree polynomial than the current double polynomial. For QCD
matrices, this can be implemented efficiently; see Ref. [24].
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