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It has been demonstrated that distillation profiles can be employed to build optimized quarkonium
interpolators for spectroscopy calculations in lattice QCD. We test their usefulness for heavy-
light systems on (3+1)-flavor ensembles with mass-degenerate light and a charm quark in the
sea in preparation for a future DD-scattering analysis. The additional cost of light inversions
naturally leads to the question if knowledge of optimal profiles can be used to avoid superfluous
computations. We show such optimal profiles for different lattice sizes and pion masses and

discuss general trends. Furthermore, we discuss the handling of momenta in this framework.
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1. Introduction

Distillation, as introduced in [1], has quickly established itself as an important tool for hadron
spectroscopy. In its standard form however, it does not provide a degree of freedom that could
be used to optimize the interpolators. This can be rectified with the introduction of distillation
profiles [2]. Here we shall recapitulate and give a short summary of this approach. The distillation
operator is usually written as

S() =V()IV(1), (1)

where the V correspond to the eigenvectors of the lattice Laplacian, and a common choice is J = 1.
The key idea of [2] is to use the diagonal matrix J

Ji,;g(f) =0ij 0ap 8(A;(1)) (2)

as an additional degree of freedom to be exploited in a variational formulation, where the entries of
J are a function of the Laplacian eigenvalue . When calculating correlators

Copt(1) = =(tr [@2(1) 74, (1,0) D1(0) 74, (0, 1) | Dgauge, 3)

the perambulator is introduced, as it was in [1],
t(t1,1) = V(1) D™V (12), )

and everything else is included in the elemental

¢> i,{é([) = VI () Tap(1) g"(A:(1)) g(4;(1) V; (). ®)
a,

The important thing is that the perambulators are not changed by the introduction of J # 1.
Therefore, none of the inversions of the Dirac operator have to be redone when J is changed. In [2]
the functions g(4;(r)) are called quark profiles and it is demonstrated that a Gaussian with its peak
at zero is a beneficial choice. This can be understood as follows. When using standard distillation,
the Laplacian eigenmodes above a certain index Ny are cut off and all lower eigenmodes are used
equally. By introducing J # 1 the higher eigenmodes are still cut off, but even below threshold the
entries approaching Ny from below are suppressed. The extent of this suppression is determined
by the width of the Gaussian profile, which is parameterized by o

2
gn(d) = exp(-—). (6)

O-n
In this equation o appears with an index, hinting at the fact that one can use a basis of multiple
Gaussian profiles and use the GEVP [3, 4] to optimize the interpolator. The result can be interpreted
as an optimized linear combination of the Gaussian profiles called the optimal profile. In [2] this
method was successfully applied for a setup with unphysical degenerate heavy quarks. The purpose
of this work is to demonstrate that this approach can also be used for the heavy-light system
and to take a first look at the qualitative differences between profiles of heavy-light systems and
charmonium. One reason why an exploration of heterogeneous mesons with this method is of
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Name ‘ Ny ‘ Temporal boundaries ‘ al[fm] ‘ L3XT ‘ Ny ‘ m[GeV]
All 3+1 open 0.054 | 323 %96 | 200 | ~ 1 0r0.42
D5 2 0.0653 | 243 x 48 | 200 0.439

periodic

Table 1: Parameters of the two ensembles used in this work.

interest is that the quark profile is not directly accessible, as it always appears in pairs in eq. (3). In
the case of charmonium, it is natural to assume that a symmetry relation between the two profiles of
identical quarks exists, which is no longer the case for heavy-light systems. In addition to this, we
explore the application of distillation profiles at non-zero momenta, using both lattice momentum
and partially twisted periodic boundary conditions [5, 6].

2. Ensembles and Computational Details

Two very different ensembles are used in this work, both of which use the improved Wilson
action [7]. Their most important parameters are given in table 1. The first ensemble (Al1) is
described in [8]. It is at the SU(3)gavor Symmetric point. There are two sub-variants of this
ensemble which differ only in their pion mass. Here, only the lighter pion mass is used. The
second ensemble (D5) is a two-flavor ensemble provided by the the CLS (Coordinated Lattice
Simulations) team and employed in earlier studies e.g. [9, 10, 11]. Its charm quark mass is chosen
such that mp_ = mp, phys [9] and «; is tuned to keep % and % physical [10]. This ensemble was
included to test the use of periodic boundary conditions in combination with distillation profiles
as this is of interest to us for a project described in [12]. The computational setup used to obtain
the perambulators is the same as in [2] and Ny = 200 is used for both ensembles since their 3D
volumes in physical units are approximately equal. The elementals and correlators are computed
using a custom implementation. The package pyerrors [13] is used for its implementation of the
I'-Method for error estimation [14] and for solving the generalized eigenvalue problem. For this
exploratory project, only a part of the available statistics is used.

3. A First Look at the Profiles

In figs. 1 and 2 optimal profiles and their resulting effective masses are shown for an assortment
of particle channels. A few remarks are necessary regarding the portrayal and interpretation of the
optimal profiles. As the optimal profile is a visualization of a solution to the GEVP, it comes with
an arbitrary amplitude and sign. Here, all profiles are fixed to start at the same positive value. The
errors of the profiles derive from the errors of the eigenvectors. They include only the correlated
error propagation from the operations used to solve the GEVP. Since the profiles are divided by
their starting value, the error of the ratio at that point would naturally be zero. We choose to re-scale
the value and error of the profile to improve readability of the error bands.

The plots of the profiles run from lower eigenmodes on the left to higher eigenmodes on the
right. In the language of smeared sources, the left side corresponds to contributions from smoother
fields while the right side corresponds to more localized sources. Excited states often show nodes
in their profiles. This was already observed in [2]. In both fig. 1 and fig. 2 a clear trend can be seen.
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Figure 1: Optimized profiles (left) and effective masses (right) for different particles on the ensemble A11.
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Figure 2: Optimized profiles (left) and effective masses (right) on CLS ensemble D5.

The profiles of charmonium are wider than the ones of the D-meson, which themselves are wider
than the ones of the pion. Lighter particles seem to have narrower profiles and therefore a better
overlap with more smeared sources.

From the optimal profiles one can work backwards to find the corresponding optimal spatial
sources. This is done along the lines of [2] by reconstructing the distillation operator (eq. (2)) and
applying it to a point-source. The resulting field spans the volume of the lattice and still has Dirac
and color indices. By averaging over color, applying ¥ — tr(ys¥) and taking the absolute value
one obtains a real scalar field that can be plotted. This is done in fig. 3. The result seems to confirm
the observations from figs. 1 and 2 as the less localized background appears more significant for the
heavy-light system. There are, however, two things to note. The plot is logarithmic and the central
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Figure 3: Visualization of the smeared quark fields from the optimal profiles on D5. A point source is
introduced at the center of the lattice. Time and gauge configurations are averaged over. One spatial axis is
sliced at the height of the point source. Left: colormap of the normalized field. Bright colors are higher.
High values are clamped at 0.03 . Right: logarithmic 3D plot using the same data as the left plots.

peak contains most of the field, and the plot shows concentric rings. Those rings are observed in
[2] as well but only for excited states.

4. Restricting N%,ight

The observation that the profiles of mesons containing lighter quarks are narrower might be a
useful one. The number of inversions needed per configuration is given by 4Ny T, where 7' might
be smaller than the temporal extent of the lattice in the case of open boundary conditions. Light
inversions are costly and a natural approach to reduce this cost is to restrict Ny. The fact that higher
eigenmodes are found to contribute very little to the optimal interpolator justifies this restriction.
While all 200 inversion were performed, the restriction can be modeled by setting the perambulator
to zero wherever one of its distillation indices exceeds a certain cutoff. This is only done for the
light perambulator. Trivially, the change of the light perambulator does not effect charmonium. For
the heavy-light system the results are shown in fig. 4. They are almost compatible for Gaussian
profiles with a small width and agree less as the width gets larger. This is to be expected, as only
wider profiles are sensitive to larger eigenmodes. For the data shown here, a cut to N?,ght =100
appears justified, cutting the cost of inversions almost in half. It can be shown that for elementals
diagonal in eigenvector space only min {N ?,ght, N%,harm} eigenvectors contribute to the correlators of
D-mesons.
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Figure 4: Effective D-meson masses for different values of N 3ght.

5. Momenta

Lattice momenta can be introduced by using the general form of the elemental [1, 15]
@; ;(7) = D VI(E) e P T g"(4) g(A)) TV;(3), (7)
X

suppressing Dirac indices. This is appealing from a computational standpoint for two reasons. First,
the perambulators are unaffected and no repeated inversions are required. Second, the elemental
can be further split into a part depending on the profile and the gamma-structure and a part encoding
the momentum, while the latter can be reused for all computations at the same lattice momentum:

@, ;(5) = Tg(A)g (1)) ). Vi (®) e P ¥V, (). (8)

Note that I" is a 4 x 4 Dirac matrix that appears at every entry of the Ny X Ny elemental and
that this factorization only holds for elementals without covariant derivatives. Results at non-zero
momentum can be seen in fig. 5. On the right side of the plots in transparent colors we show
the rest-energy scaled by the continuum dispersion relation. Apart from a slower convergence to
a plateau, this matches the energies at higher momenta relatively well. We also show a random
profile at the first lattice momentum where all Gaussian profiles contribute equally, regardless of
the GEVP. The result converges slower than the optimized profile, which can be seen as evidence
that the optimization procedure still works well at non-zero momentum. Higher momenta were
computed but are not shown as they become much noisier.

To apply partially twisted periodic boundary conditions in this context one needs to recompute
the perambulator with the desired boundary conditions applied. Here, the boundary conditions are
only imposed on the charm quark. Then, one only needs to use this perambulator in place of the
non-twisted one in the rest of the calculation. This is done for the ensemble D5. In fig. 6 we see that
the momenta match the continuum dispersion relation. A twisting angle of 2 would correspond to
the first lattice momentum, which is also included. Furthermore, a comparison is shown between
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Figure 5: Optimized profiles (left) and effective energies (right) for different momenta on Al1.
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Figure 6: Dispersion (left) and effective energies (right) on D5 at different momenta, induced by lattice-
momenta and isotropic partially twisted periodic boundary conditions. A profile with o = 0.1 is used. For
the second point in the left plot, 8 = +2.6 is included for test purposes. The twisting angle is 27 for the first
lattice momentum and the continuum dispersion relation is displayed for comparison.

the first lattice momentum with a Gaussian profile and standard distillation. One of the points is
computed using both a positive and a negative twisting angle to show that they agree on the isotropic
lattice.
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6. Summary

The present investigation reveals the efficacy of distillation profiles across a range of scenarios,
notably demonstrating their merit for heavy-light systems and at non-zero lattice momentum which
has not been addressed so far. We find that the profiles tend to become narrow when lighter quarks
are included. This leads to the idea of further restricting the number of light eigenmodes to save
computation cost. The tests reported here were performed on two very different ensembles, one at
the SU(3) symmetric point with a dynamic charm quark and one with two degenerate light quarks
and periodic boundary conditions.
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