
P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
6
0

QED corrections to meson masses

Joshua Swaim∗

University of Connecticut,
Storrs, Connecticut, United States

E-mail: joshua.swaim@uconn.edu

We present our progress on calculating leading-order QED corrections to meson masses and bare
quark masses. As lattice QCD calculations become more precise, these QED corrections are
becoming more important. However, one of the challenges in adding QED effects to QCD calcu-
lations is avoiding power-law suppressed finite-volume effects. By using the recently introduced
infinite-volume reconstruction method for QED, we are able to avoid this problem and perform
calculations with exponentially-suppressed finite-volume effects.
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1. Introduction

As lattice QCD continues to progress, precision calculations increasingly need to account for
QED and isospin breaking corrections [1]. For example, QED corrections are needed for precise
calculations of the muon anomalous magnetic moment [2, 3]. These corrections are important not
only because they directly affect observables, but also because they change the definition of the
physical point [4]. Since meson masses are frequently used when defining the physical point, it is
important to understand QED corrections to meson masses. Several groups have recent work on
this topic [5–8].

Introducing QED to lattice calculations is challenging. One problem is that QED contains
unconfined massless degrees of freedom: the photons. Photon propagators, unlike propagators for
massive particles, do not decay exponentially at large distances. This means that introducing QED
naively leads to large finite-volume errors. Furthermore, combining QED with periodic boundary
conditions leads to technical complications. There are several formulations which address these
difficulties in various ways, such as QEDTL [9], QEDL [10], QED with massive photons [11], and
QED with C∗ boundary-conditions [12].

In 2018, a new method was introduced that avoids the challenges posed both by volume and
periodic boundary conditions. This method is called the infinite-volume reconstruction method [13].
In this method, QED corrections are calculated semi-analytically in infinite volume. Contributions
from outside the lattice volume are reconstructed with exponentially-suppressed systematic errors.
In this paper, we present our progress on using this method to calculate QED corrections to meson
and quark masses.

In section 1.1, we discuss how QED corrections are calculated based on QCD correlation
functions. In section 1.2, we explain the infinite-volume reconstruction method. In section 2.1, we
demonstrate that this method works for calculating QED corrections to meson masses. Finally, in
section 2.2, we briefly discuss our work so far in extracting the QED corrections to the quark mass
renormalization constants.

1.1 Adding QED Corrections to QCD

In the infinite-volume reconstruction method [13], QED is introduced perturbatively. By
expanding the path integral in the electric charge 𝑒, we get

⟨O(𝑇)O(−𝑇)⟩QCD+QED = ⟨O(𝑇)O(−𝑇)⟩QCD

+ 𝑒2

2

∫
𝑑4𝑥𝑑4𝑦⟨O(𝑇)𝐽𝜇 (𝑥)𝐽𝜈 (𝑦)O(−𝑇)⟩QCD𝑆𝜇𝜈 (𝑥 − 𝑦) + O(𝑒4), (1)

where 𝑆𝜇𝜈 (𝑥 − 𝑦) is the photon propagator. ⟨⟩QCD+QED represents the vacuum expectation value of
operators in the full theory of QCD+QED, while ⟨⟩QCD represents the vacuum expectation value
of operators computed using only QCD. If O is an operator that creates a hadron, the order 𝑒2

correction can be represented diagrammatically, as shown in Figure 1. Based on equation 1, the
leading-order QED correction to the mass of a hadron is given by

Δ𝑚 =
𝑒2

2

∫
𝑑4𝑥H𝜇𝜈 (𝑥)𝑆𝜇𝜈 (𝑥), (2)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
6
0

QED corrections to meson masses Joshua Swaim

Figure 1: A diagramatic representation of the leading-order QED correction to a hadronic propagator. The
straight lines represent hadronic propagators computed non-perturbatively using only QCD, and the other
line represents a free photon propagator. The points where the lines connect represent current insertions.

where, on the lattice,

H𝜇𝜈 (𝑥) = 𝐿3 ⟨O(𝑡 + 𝑇)𝐽𝜇 (𝑥)𝐽𝜈 (0)O(−𝑇)⟩QCD

⟨O(𝑡 + 𝑇)O(−𝑇)⟩QCD
, (3)

and O is an operator that creates the desired hadronic state. In infinite volume, assuming for example
that O creates a pion, this definition would correspond to

H𝜇𝜈 (𝑥) =
1

2𝑚
⟨𝜋 |𝐽𝜇 (𝑥)𝐽𝜈 (0) |𝜋⟩QCD. (4)

1.2 The Infinite-Volume Reconstruction Method

We could use equation 2 to estimate Δ𝑚 by evaluating H𝜇𝜈 (𝑥) using lattice QCD and replacing
the integral over space with a sum over the lattice volume. However, this would result in large finite-
volume errors. To see this, note that when 𝑡 >> | ®𝑥 |, H𝜇𝜈 (𝑥) is order 1, even at large distances.
Similarly, the photon propagator 𝑆𝜇𝜈 (𝑡, ®𝑥) is only power-law (not exponentially) suppressed at large
𝑡 because the photon is massless. Therefore, the finite-volume errors resulting from evaluating
equation 2 on the lattice will only be power-law suppressed.

To get exponentially-suppressed finite-volume effects, we can reconstruct the large-distance
contributions to the integral using the infinite-volume reconstruction method [13]. At large |𝑥 |,
H𝜇𝜈 (𝑥) is dominated by contributions from the lowest energy states. We choose some cutoff time
𝑡𝑠 that is large enough for H𝜇𝜈 (𝑡𝑠, ®𝑥) to be dominated by the single-meson intermediate states, but
small enough that we don’t need to worry about around-the-world effects. Then we can reconstruct
H𝜇𝜈 (𝑡, ®𝑥) for 𝑡 > 𝑡𝑠 using

H𝜇𝜈 (𝑡, ®𝑥′) ≈
∫

𝑑3®𝑥H𝜇𝜈 (𝑡𝑠, ®𝑥)
∫

𝑑3 ®𝑝
(2𝜋)3 𝑒

−𝑖 ®𝑝 · ( ®𝑥′− ®𝑥 )𝑒−(𝐸𝑛, ®𝑝−𝑚𝜋 ) (𝑡−𝑡𝑠 ) , (5)

with corrections to this formula exponentially suppressed (see [13] for more details).

2. Results

2.1 Calculating Meson Masses

In figure 2, we show our calculated Δ𝑚 based on equation 2 as a function of the cutoff time
𝑡𝑠. We show both the results with the infinite-volume reconstruction and the "short" results where
the integral is simply cutoff at time 𝑡𝑠 and no infinite-volume reconstruction is performed. There
is a plateau region (highlighted in the plots) where the calculated mass correction does not depend
strongly on 𝑡𝑠. This indicates that we can indeed choose 𝑡𝑠 sufficiently large that the infinite-volume
reconstruction works well.
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Figure 2: Δ𝑀 versus 𝑡𝑠 on a 483 × 96 lattice (top) and 643 × 128 lattice (bottom) on ensembles from
RBC/UKQCD [14] using Iwasaki gauge action and domain-wall fermions. "Short" means including only
|𝑡 | < 𝑡𝑠 contributions.
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2.2 Quark Masses and Renormalization

In QCD, the quark masses renormalize by a multiplicative constant

𝑚
MS,QCD
𝑓

= 𝑍𝑚𝑚 𝑓 , (6)

where 𝑚 𝑓 is the bare quark mass of flavor 𝑓 and 𝑚
MS,QCD
𝑓

is the renormalized quark mass in
QCD (without QED corrections). Adding QED to the theory introduces additional divergences.
Therefore, the renormalization constant is modified. We define 𝑍QED by

𝑚MS
𝑓 = 𝑍𝑚(1 + 𝑒2

𝑓 𝑍QED)𝑚 𝑓 , (7)

where 𝑚MS
𝑓

is the renormalized quark mass taking both QCD and QED into account.
To get 𝑍QED, we note that hadron masses are renormalization-invariant by definition. To see

how we can use this fact, suppose that we could calculate the shift Δ𝑚𝐻 in the mass of a hadron 𝐻

caused by making a small change Δ𝑚MS
𝑓

in an MS quark mass. We could then figure out the shift
Δ𝑚 𝑓 in the bare lattice quark mass that would be required to produce the same Δ𝑚𝐻 . By comparing
the shift in MS quark mass to the equivalent shift in bare quark mass, we could determine the
renormalization constant.

To the leading order, the change in hadron mass, 𝑚𝐻 , due to a change in the quark mass 𝑚 𝑓

and introducing an electric charge 𝑒 is

Δ𝑚𝐻 =
𝑒2

2

∫
𝑑4𝑥H𝜇𝜈 (𝑥)𝑆𝜇𝜈 (𝑥) + Δ𝑚 𝑓H3pt

𝑓
,

where H is the four-point function, and (in the lattice normalization)

H3pt
𝑓

= 𝐿3 ⟨O𝐻 (𝑇)�̄� 𝑓 (0)𝜓 𝑓 (0)O𝐻 (−𝑇)⟩
⟨O𝐻 (𝑇)O𝐻 (−𝑇)⟩ .

In MS, we can calculate the divergent part of the integral using the operator product expansion [15].
We can compare this with the small-distance (high-momentum) contribution to this integral from
the lattice.

3. Conclusion

We demonstrated that the infinite-volume reconstruction method can be used to get QED
corrections to meson masses with exponentially-suppressed finite-volume effects. To get final
results, we still need to perform a continuum extrapolation and choose a scheme to match our
simulation parameters to the physical world. To get quark mass corrections, we need to determine
QED corrections to the renormalization constants.
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