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1. Introduction

In [1] we have introduced a new operator, namely "Laplace trial states", which replace the
spatial Wilson line in a classical Wilson loop with a weighted sum of eigenvector pairs of the 3D
lattice Laplace operator. In the case of the static potential we get an improvement for the static
energies, which reach their plateau values at earlier temporal distances and we basically get off-
axis distances for free. Here, we want to apply this technique to compute static-hybrid potentials,
where the gluonic excitations are realized via covariant derivatives of individual eigenvectors. The
technology developed in this article for hybrid potentials can be applied to multi-quark potentials
which provide insight into the internal structure of exotic configurations of static sources with
non-trivial spin and isospin [2], as well as static-light potentials.

2. Methods

Static potentials are classically measured via Wilson loops, which arise from correlations in
time of trial states 𝑄̄(®𝑥)𝑈𝑠 (®𝑥, ®𝑦)𝑄(®𝑦) for a static color anti-color source pair located at spatial
positions ®𝑥 and ®𝑦 respectively. The spatial Wilson line 𝑈𝑠 (®𝑥, ®𝑦) = exp(𝑖

∫ ®𝑦
®𝑥 𝐴𝜇𝑑𝑥

𝜇) = ∏
𝑈𝜇 is a

path-ordered product of link variables from ®𝑥 to ®𝑦. We replace the spatial part of trial states in each
time-slice with an alternative operator constructed from eigenmodes 𝑣𝑖 (®𝑥) of the three-dimensional
gauge-covariant lattice Laplace operator Δ,

Φ(®𝑥, ®𝑦) = 𝑄̄(®𝑥)
𝑁𝑣∑︁
𝑖=1

𝜌2
𝑖 𝑣𝑖 (®𝑥)𝑣

†
𝑖
(®𝑦)𝑄(®𝑦) , (1)

which respects the gauge transformation behavior of the spatial Wilson line and ensures gauge
covariance of the trial state. We denote Eq. (1) as a Laplace trial state, where we include a quark
profile 𝜌𝑖 , which modulates the contribution from different eigenmodes. In [1] we confirmed the
consistency of results from classical Wilson loops and (temporal) Laplace trial state correlators.
We improve the overlap of the operator by introducing a set of Gaussian profile functions 𝜌(𝜆𝑖) =
𝑒−𝜆

2
𝑖
/4𝜎2

𝑘 into the the correlators and solving a generalized eigenvalue problem (GEVP) to identify
the optimal trial state profiles 𝜌̃

(𝑛)
𝑅

(𝜆) for various energy levels 𝑉𝑛 (𝑅) (𝑛 = 0, 1, 2, . . .). First, we
prune the Laplace trial state correlation matrix L𝑘𝑙 using the four most significant singular vectors
𝑢𝑖 from a singular value decomposition (SVD) at a specific 𝑡𝐺 via L̃𝑚𝑛 = 𝑢

†
𝑚L𝑘𝑙𝑢𝑛, which keeps a

smaller set of distinct profiles and improves the stability of the GEVP. We perform the latter at the
same 𝑡𝐺 for all spatial distances 𝑅:

L̃(𝑡)𝜈 (𝑛) (𝑡, 𝑡𝐺) = 𝜇 (𝑛) (𝑡, 𝑡𝐺)L̃(𝑡𝐺)𝜈 (𝑛) (𝑡, 𝑡𝐺). (2)

From the eigenvalues or so-called principal correlators lim𝑡→∞ 𝜇 (𝑛) (𝑡, 𝑡𝐺) = 𝑒−𝐸𝑛 (𝑡−𝑡𝐺 ) we get
the effective energies for a fixed 𝑡𝐺 . From the generalized eigenvectors 𝜈

(𝑛)
𝑘

we can construct the
optimal trial state profiles 𝜌̃ (𝑛)

𝑅
for the energy states provided by the GEVP,

𝜌̃
(𝑛)
𝑅

(𝜆𝑖) =
∑︁
𝑘

𝜈
(𝑛)
𝑘

𝜌̄
(𝑘 )
𝑅

=
∑︁
𝑘,𝑙

𝜈
(𝑛)
𝑘

𝑢𝑘,𝑙𝑒
−𝜆2

𝑖
/2𝜎2

𝑙 . (3)

Static hybrid potentials are characterized by the following quantum numbers Λ𝜖
𝜂 [3]
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• Λ = 0, 1, 2, 3, . . . ≡ Σ,Π,Δ,Φ, . . ., the absolute value of the total angular momentum with
respect to the axis of separation of the static quark-antiquark pair,

• 𝜂 = +,− ≡ 𝑔, 𝑢, the eigenvalue corresponding to the operator P ◦ C, i.e. the combination of
parity about the central point and charge conjugation,

• 𝜖 = +,−, the eigenvalue corresponding to the operator P𝑥 , which denotes the spatial reflection
with respect to a plane including the axis of separation.

Note that for angular momentum Λ > 0 𝜖 is not a good quantum number. In order to build
hybrid Laplace trial states we introduce gluonic excitations via covariant derivatives of the Laplacian
eigenvectors∇®𝑘𝑉 (®𝑥) = 1

2 [𝑈𝑘 (®𝑥)𝑉 (®𝑥+ 𝑘̂)−𝑈†
𝑘
(®𝑥− 𝑘̂)𝑉 (®𝑥− 𝑘̂)]. We construct static hybrid potentials

from correlation functions of Laplace trial states for 𝑅 = |®𝑟 | = | ®𝑦 − ®𝑥 | and 𝑇 = |𝑡1 − 𝑡0 |

Σ+
𝑔 (𝑅,𝑇) =∑︁
®𝑥,𝑡0,𝑖, 𝑗

〈
Tr
[
𝑈𝑡 (®𝑥; 𝑡0, 𝑡1)𝜌(𝜆 𝑗)𝑣 𝑗 (®𝑥, 𝑡1)𝑣†𝑗 (®𝑦, 𝑡1)𝑈

†
𝑡 (®𝑦; 𝑡0, 𝑡1)𝜌(𝜆𝑖)𝑣𝑖 (®𝑦, 𝑡0)𝑣†𝑖 (®𝑥, 𝑡0)

]〉
, (4)

Σ+
𝑢/𝑔 (𝑅,𝑇) =∑︁
®𝑥,𝑡0,𝑖, 𝑗 , ®𝑘 | | ®𝑟

〈
Tr
[
𝑈𝑡 (®𝑥; 𝑡0, 𝑡1)𝜌(𝜆 𝑗){[∇®𝑘𝑣 𝑗] (®𝑥, 𝑡1)𝑣†𝑗 (®𝑦, 𝑡1) ± 𝑣 𝑗 (®𝑥, 𝑡1) [∇®𝑘𝑣 𝑗]†(®𝑦, 𝑡1)}

𝑈
†
𝑡 (®𝑦; 𝑡0, 𝑡1)𝜌(𝜆𝑖){[∇®𝑘𝑣𝑖] (®𝑦, 𝑡0)𝑣

†
𝑖
(®𝑥, 𝑡0) ± 𝑣𝑖 (®𝑦, 𝑡0) [∇®𝑘𝑣𝑖]

†(®𝑥, 𝑡0)}
]〉
, (5)

Π𝑢/𝑔 (𝑅,𝑇) = Π∓(𝑅,𝑇) =∑︁
®𝑥,𝑡0,𝑖, 𝑗 , ®𝑘⊥®𝑟

〈
Tr
[
𝑈𝑡 (®𝑥; 𝑡0, 𝑡1)𝜌(𝜆 𝑗){[∇®𝑘𝑣 𝑗] (®𝑥, 𝑡1)𝑣†𝑗 (®𝑦, 𝑡1) ± 𝑣 𝑗 (®𝑥, 𝑡1) [∇®𝑘𝑣 𝑗]†(®𝑦, 𝑡1)}

𝑈
†
𝑡 (®𝑦; 𝑡0, 𝑡1)𝜌(𝜆𝑖){[∇®𝑘𝑣𝑖] (®𝑦, 𝑡0)𝑣

†
𝑖
(®𝑥, 𝑡0) ± 𝑣𝑖 (®𝑦, 𝑡0) [∇®𝑘𝑣𝑖]

†(®𝑥, 𝑡0)}
]〉
, (6)

where we include Gaussian profiles 𝜌(𝜆𝑖) = 𝑒−𝜆
2
𝑖
/2𝜎2

𝑘 to give different weights to individual
eigenmodes 𝑣𝑖 according to their eigenvalues 𝜆𝑖 . Working with a number of Gaussian widths 𝜎𝑘

we construct a correlation matrix and solve a generalized eigenvalue problem (GEVP) using the
pruned matrix to identify the optimal trial state profiles 𝜌̃

(𝑛)
Λ𝜖

𝜂 (𝑅) (𝜆) for the static energy levels of
individual states at various distances, see also Eq. (2).

We performed all our measurements on 48 × 243 lattices with periodic boundary conditions
except for anti-periodic boundary conditions for the fermions in the temporal direction. They were
produced with the openQCD package [4] using the plaquette gauge action and two dynamical
non-perturbatively 𝑂 (𝑎) improved Wilson quarks with a mass equal to half of the physical charm
quark mass. The bare gauge coupling is 𝑔2

0 = 6/5.3 and the hopping parameter is 𝜅 = 0.13270,
the scale 𝑟0/𝑎 = 4.2866(24) [5]. All measurements were performed by our C+MPI based library
that facilitates massively parallel QCD calculations. A total of 𝑁𝑣 = 200 eigenvectors of the
3D covariant Laplacian were calculated as described in [6]. When forming the correlations of the
Laplace trial states, we apply one HYP2 smearing step with parameters 𝛼1 = 1, 𝛼2 = 1 and 𝛼3 = 0.5
to the temporal links [7]. The error analysis in this work was done using the Γ method [8] with a
recent python implementation (pyerror) [9] with automatic differentiation [10].

We show the static hybrid ground state potentials of Σ𝑔/𝑢 and Π𝑔/𝑢 and some excited states
in figure 1. We plot the potentials relative to twice the static-light S-wave 𝑚𝑝𝑠 and also mark the
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𝑃−-wave mass 𝑚𝑠, also computed via Laplace trial state correlators

𝐶
𝑠𝑙,𝑖 𝑗

𝑆/𝑃−
(𝑡) =

∑︁
®𝑥,𝑡0

〈
Tr𝑐,𝑑

(
[𝑣𝑖 (𝑣†𝑖𝐷

−1𝑣 𝑗)𝑣†𝑗] (®𝑥, 𝑡0 + 𝑡; ®𝑥, 𝑡0)𝑃±𝑈𝑡 (®𝑥; 𝑡0, 𝑡0 + 𝑡)
)〉

=
∑︁
𝑡0

〈
Tr𝑑{𝜏𝑖 𝑗 (𝑡0 + 𝑡, 𝑡0)𝑃±}

∑︁
®𝑥
𝑣
†
𝑗
(®𝑥, 𝑡0)𝑈𝑡 (®𝑥; 𝑡0, 𝑡0 + 𝑡)𝑣𝑖 (®𝑥, 𝑡0 + 𝑡)

〉
with light perambulators 𝜏𝑖 𝑗 = 𝑣

†
𝑖
𝐷−1𝑣 𝑗 from [6] and projectors 𝑃± = (1 ± 𝛾4)/2, see also [11].

We plot up to half the lattice extent 𝐿/2 and see that string breaking distances of Σ𝑔 and Π𝑢 are just
above half the spatial lattice extent. For on-axis separations the potential of Π𝑔/𝑢 in the continuum
representation can be obtained from the 𝐸±

1 representation of 𝐷4ℎ. For off-axis separations we
technically do not have 𝐷4ℎ, but we can consider off-axis separations in a 2D plane only rather than
the 3d volume, to be left with one orthogonal direction for the covariant derivatives. For Σ𝑢 with
derivatives along the separation axis we compute on-axis distances only.

In figure 2 we show examples of optimal profiles for static hybrid energies at distance 𝑅 = 2𝑎.
The ground state profiles (blue) show that only about 100 eigenvectors are relevant. For excited
states also eigenvectors corresponding to larger eigenvalues seem to play a role, but the profiles do
come with somewhat larger errors and should not be over-interpreted. We can visualize a hybrid
trial state by inserting an eigenvector pair 𝑣†(®𝑧)𝑣(®𝑧) which acts as a ’test-charge’ in the Laplace trial
states, i.e.,

𝜓
(𝑛)
Σ𝑢

(®𝑧, 𝑅) =

〈 ∑︁
®𝑥,𝑡 , ®𝑘 | | ®𝑟

�������� 𝑁𝑣∑︁
𝑖, 𝑗

𝜌̃
(𝑛)
Σ𝑢 ,𝑅

(𝜆𝑖 , 𝜆 𝑗)
[
∇®𝑘𝑣𝑖 (®𝑥, 𝑡)𝑣

†
𝑖
(®𝑧, 𝑡)𝑣 𝑗 (®𝑧, 𝑡)𝑣†𝑗 (®𝑥 + ®𝑟, 𝑡)

±𝑣𝑖 (®𝑥, 𝑡)𝑣†𝑖 (®𝑧, 𝑡)𝑣 𝑗 (®𝑧, 𝑡) [∇®𝑘𝑣 𝑗]†(®𝑥 + ®𝑟, 𝑡)
] ��������

2

〉
, (7)

𝜓
(𝑛)
Π𝑢/𝑔

(®𝑧, 𝑅) =

〈 ∑︁
®𝑥,𝑡 , ®𝑘⊥®𝑟

�������� 𝑁𝑣∑︁
𝑖, 𝑗

𝜌̃
(𝑛)
Π𝑢/𝑔 ,𝑅

(𝜆𝑖 , 𝜆 𝑗)
[
∇®𝑘𝑣𝑖 (®𝑥, 𝑡)𝑣

†
𝑖
(®𝑧, 𝑡)𝑣 𝑗 (®𝑧, 𝑡)𝑣†𝑗 (®𝑥 + ®𝑟, 𝑡)

±𝑣𝑖 (®𝑥, 𝑡)𝑣†𝑖 (®𝑧, 𝑡)𝑣 𝑗 (®𝑧, 𝑡) [∇®𝑘𝑣 𝑗]†(®𝑥 + ®𝑟, 𝑡)
] ��������

2

〉
. (8)

which allows to scan a 3D time-slice via the free coordinate ®𝑧1. We average/sum over the whole
lattice (®𝑥, 𝑡), which already gives a very smooth signal on a single gauge configuration. Note that
we include the optimal trial state profiles from above,

𝜌̃
(𝑛)
𝑅

(𝜆𝑖 , 𝜆 𝑗) =
∑︁
𝑘,𝑙

𝜈
(𝑛)
𝑘

𝑢𝑘,𝑙𝑒
−𝜆2

𝑖
/4𝜎2

𝑙 𝑒
−𝜆2

𝑗
/4𝜎2

𝑙 , (9)

which depend on the two eigenvalues𝜆𝑖 and𝜆 𝑗 . The singular vectors 𝑢𝑘 and generalized eigenvectors
𝜈 (𝑛) are derived from the SVD and GEVP respectively, for specific quark separation distances 𝑅,
and allow us to look at the profiles for various energy states.

In figure 3 we visualize the spatial distribution optimal static hybrid Laplace trial states for
Σ𝑢 and Π𝑢 energy levels 𝑛 = 0, 1, 2 with quark-anti-quark distance 𝑅 = 6𝑎 in a plane including

1Note, if we sum over ®𝑧 due to
∑

®𝑧 𝑣
†
𝑖
(®𝑧, 𝑡)𝑣 𝑗 (®𝑧, 𝑡) = 𝛿𝑖 𝑗 we recover the trial states which go into Eq. (5) and Eq. (6),

as well as the profile Eq. (3) from Eq. (9).
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Σ

Π

Σ

Σ '

Π

Π
u

Σg"

'
Σ

Figure 1: Static hybrid potentials relative to twice the static-light S-wave mass 𝑚𝑝𝑠 and the 𝑃−-wave mass
𝑚𝑠 and the first radial excitation Σ𝑔 + 2𝜋/𝑅 which approaches Σ′

𝑔. String breaking distances of Σ+
𝑔 and Π𝑢

are just above half the lattice extent. 3D resp. 2D off-axis distances for Σ+
𝑔 and Π𝑔/𝑢, on-axis only for Σ+

𝑢.

0.0

0.5

1.0

Optimal profiles for     S u (R=2a) on Em1 (48x243)
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1.0
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Optimal profiles for     u (R=2a) on Em1 (48x243)

n=0
n=1
n=2

P

Figure 2: Optimal profiles 𝜌̃ (𝑛)
𝑅=2 (𝜆𝑖) in Eq. (3) of Σ+

𝑢 (left) and Π𝑢 (right) at distance 𝑅 = 2𝑎.

the quark separation axis. Red dots mark the static quark positions and arrows the direction of the
derivatives. The visualizations of excited states show additional nodes in the spatial distribution
along and perpendicular to the quark separation axis, resulting from the optimal profiles. The
opposite direction of the derivatives causes quite different signals for Σ𝑢 and Π states, Π𝑢 and Π𝑔

however are almost indistinguishable. The physical interpretation of these distributions in terms
of the chromo-electromagnetic field strength is not straightforward, the optimal profiles certainly
contain some information of the ground and excited states of the static potentials, the ’test-charge’
𝑣(®𝑧)𝑣†(®𝑧) however does not measure a specific color field component.
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Σ𝑢 : 𝑛 = 0 𝑛 = 1 𝑛 = 2

Π𝑢 : 𝑛 = 0 𝑛 = 1 𝑛 = 2

Figure 3: Hybrid trial state visualizations for Σ𝑢 (top) and Π𝑢 (bottom, Π𝑔 almost indistinguishable) and
energy levels 𝑛 = 0, 1, 2 (left to right) with quark-anti-quark distance 𝑅 = 6𝑎: plane including the quark
separation axis, red dots mark the static quark positions and arrows the direction of the derivatives. The color
codes is yellow for the largest values of the distributions and dark blue for the smallest values.

3. Conclusions & Outlook

We have computed static hybrid potentials 𝑉Λ𝜖
𝜂
(𝑟) for Λ𝜖

𝜂 = Σ+
𝑔/𝑢 and Π𝑔/𝑢 states in SU(3)

lattice gauge theory using alternative operators for a static quark-anti-quark pairs based on Laplacian
eigenmodes, replacing traditional Wilson loops. Instead of "gluonic handles" (excitations) of the
spatial Wilson lines we use symmetric, covariant derivatives of the Laplacian eigenvectors to form
improved Laplace trial states by applying optimal profiles to give different weights to individual
eigenvectors, derived from a generalized eigenvector problem. A high resolution of the static hybrid
potentials can be achieved as off-axis distances can easily be computed in the new approach. We
present a static hybrid spectrum including excited states and show their optimal profiles as well as
spatial distributions of the Laplace trial states. In the spectrum we also mark the string breaking
masses from static-light S- and P-waves, the string breaking distances of Σ𝑔 and Π𝑢 are just above
half our lattice extent. The new methods can also be applied to multi-quark potentials.
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