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Two particular ratios related to mesons are proposed for the study of the conformal window in
𝑆𝑈 (3) gauge theory and fundamental fermions. Lattice and other studies indicate that the lower
end, 𝑁∗

𝑓
, is at around 7 - 13 flavors which is a wide range without a clear consensus. Here we

propose the decay constant to mass ratios of mesons, 𝑓𝑃𝑆,𝑉 /𝑚𝑉 , as a proxy since below the
conformal window lattice studies have shown that they are largely 𝑁 𝑓 -independent while at the
upper end of the conformal window they are vanishing. The drop from the non-zero constant value
to zero at 𝑁 𝑓 = 16.5 might be indicative of 𝑁∗

𝑓
. We compute 𝑓𝑉 /𝑚𝑉 to N3LO and 𝑓𝑃𝑆/𝑚𝑉 to

NNLO order in (p)NRQCD. The results are unambiguously reliable just below 𝑁 𝑓 = 16.5, hence
the results are expanded á la Banks-Zaks in 𝜀 = 16.5 − 𝑁 𝑓 . The convergence properties of the
series and matching with the non-perturbative infinite volume, continuum and chiral extrapolated
lattice results at 𝑁 𝑓 = 10 suggest that the perturbative results might be reliable down to 𝑁 𝑓 = 12.
A sudden drop is observed at 𝑁 𝑓 = 12 and 𝑁 𝑓 = 13 in 𝑓𝑉 /𝑚𝑉 and 𝑓𝑃𝑆/𝑚𝑉 , respectively.
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Mesonic decay constant and mass ratios and the conformal window Daniel Nogradi

1. Introduction and summary

The lower end of the conformal window, usually denoted by 𝑁∗
𝑓
, for a given gauge group and

fermion representation, has been an elusive object of study [1–20] . Naively, one would think the
lattice approach would be an ideal way to study it because once the infinite volume, continuum and
chiral limits are taken at each flavor 𝑁 𝑓 below the loss of asymptotic freedom, the results would
be unambiguous with a similarly unambiguous conclusion about 𝑁∗

𝑓
. However it became clear

that systematic effects close to the conformal window are significantly larger than at lower flavor
numbers where the models are very similar to QCD. As a result there is not a clear consensus
for 𝑆𝑈 (3) and fundamental fermions, lattice results and non ab initio methods estimate 𝑁∗

𝑓
to be

somewhere in the range 7 − 13 which is rather broad.
In this contribution a new approach is proposed [21]: by matching the fully controlled lattice

results obtained for low fermion numbers [22–24] and fully controlled perturbative results obtained
close to but below 𝑁 𝑓 = 16.5 where asymptotic freedom is still present. The latter calculation will
be the focus of our contribution. The former are available in the range 2 ≤ 𝑁 𝑓 ≤ 10 and the task
is then to study how far down the perturbative results can be trusted from 𝑁 𝑓 = 16.5 and if they
can be matched to the last non-perturbatively obtained point at 𝑁 𝑓 = 10. The particular quantities
to be investigated are dimensionless and finite ratios related to bound states; the decay constant
to mass ratios of mesons. More precisely the ratios 𝑓𝑉 /𝑚𝑉 and 𝑓𝑃𝑆/𝑚𝑉 will be investigated in
(p)NRQCD [25–29] which is the appropriate framework inside the conformal window. These are
readily available in the range 2 ≤ 𝑁 𝑓 ≤ 10 from past lattice studies either directly, as for 𝑓𝑃𝑆/𝑚𝑉 ,
or indirectly by using the KSRF relations [30, 31] for 𝑓𝑉 /𝑚𝑉 .

The setup of the perturbative calculation is as follows. We start from a CFT close to but below
𝑁 𝑓 = 16.5 which is weakly coupled as shown by Banks-Zaks [32]. All particles are of course
massless and correlation functions fall off algebraically. A flavor singlet mass term is introduced
which leads to bound states whose masses and decay constants are proportional to 𝑚𝛼 with the
same exponent 𝛼 = 1/(1 + 𝛾) related to the mass anomalous dimension 𝛾 [33, 34]. The constant
of proportionality can be computed perturbatively following the (p)NRQCD prescription. In the
NRQCD language all 𝑁 𝑓 flavors are “heavy” and there are no “light” flavors and we need to keep
the purely perturbative terms only. The ratio of decay constants and meson masses are then obtained
as a series in the coupling with coefficients depending on 𝑁 𝑓 . In the final step both the coupling
and any explicit 𝑁 𝑓 dependence is expanded in 𝜀 = 16.5−𝑁 𝑓 leading to constant coefficients. The
final series obtained in this way contains both powers of 𝜀 and its logarithm.

As always with a perturbative result its reliability or convergence properties are non-trivial.
For the case of 𝑓𝑉 /𝑚𝑉 we have N3LO results and a comparison of the NNLO and N3LO results
show that it might be reliable down to 𝑁 𝑓 = 12. We assign a theoretical error by taking the
difference between the last two available orders. The lattice result for 𝑓𝑉 is not available directly,
only for 𝑓𝑃𝑆 but we utilise the KSRF relation to estimate 𝑓𝑉 =

√
2 𝑓𝑃𝑆 on the range 2 ≤ 𝑁𝐹 ≤ 10.

Curiously, the perturbative result at 𝑁 𝑓 = 12 is compatible with the last non-perturbative result at
𝑁 𝑓 = 10 within errors. Assuming a monotonous behavior the following picture emerges: 𝑓𝑉 /𝑚𝑉

is constant outside the conformal window and drops sharply at around 𝑁 𝑓 = 12 finally reaching
zero at 𝑁 𝑓 = 16.5. The sudden drop might be indicative of the lower end of the conformal window.

A similar analysis for the other ratio, 𝑓𝑃𝑆/𝑚𝑉 , could not be fully carried out because the
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perturbative result is only available to NNLO order for 𝑓𝑃𝑆 . Nonetheless assuming the convergence
properties are similar to 𝑓𝑉 /𝑚𝑉 we are able to conclude similarly that the perturbative result might
be reliable down to 𝑁 𝑓 = 12. A sudden drop in the ratio 𝑓𝑃𝑆/𝑚𝑉 seems to occur at around
𝑁 𝑓 = 13.

The perturbative calculation can be viewed in one of two ways. First, as alluded to above, it
may be thought of as perturbative (p)NRQCD without any terms containing Λ𝑄𝐶𝐷 explicitly. Or, it
is also instructive to view it as (p)NRQED with more diagrams due to the non-abelian nature of the
interaction. If viewed this way the bound states in question are analogous to the positronium. This
view is useful because it is easy to see that all decay constants and meson masses will be proportional
to the fermion mass, just as the decay constants and masses of positronium are proportional to the
electron mass. There is no other scale in QED than the electron mass, and there is no other scale
than the fermion mass in our calculation either since we started from a CFT. The constant of
proportionality in QED is well-known to contain powers of 𝛼 as well as log(𝛼) which in our case
will lead to 𝜀 and log(𝜀).

2. Perturbative results

As with any perturbative calculation a running scale 𝜇 is introduced and since we start from
a CFT the natural scale is 𝜇 = 𝑚, the mass of the fermions1. All results will be given in the MS
scheme and the renormalized coupling will be denoted by 𝑔2(𝜇)/(16𝜋2) = 𝑔2(𝑚)/(16𝜋2) = 𝑎. The
decay constants and meson masses are expanded in 𝑎 leading to [35–39]

𝑓𝑃𝑆,𝑉 = 𝑏0 𝑚 𝑎3/2
(
1 + 𝑏10𝑎 + 𝑏11𝑎 log 𝑎 + 𝑏20𝑎

2 + 𝑏21𝑎
2 log 𝑎 + 𝑏22𝑎

2 log2 𝑎 +𝑂 (𝑎3)
)

𝑚𝑉 = 𝑐0 𝑚
(
1 + 𝑐20𝑎

2 + 𝑐30𝑎
3 + 𝑐31𝑎

3 log 𝑎 +𝑂 (𝑎4)
)
. (1)

The leading term in the mass, 𝑐0 = 2, just follows from having a free fermion and anti-fermion pair
whereas the first correction 𝑐20 < 0 is familiar from the quantum mechanical binding energy in
a Coulomb potential. Further radiative corrections are systematically obtained using (p)NRQCD.
The leading expression, 𝑏0, for the decay constants is proportional to the ground state wave function
at the origin. The explicit form of the corrections, NNLO for 𝑓𝑃𝑆 and N3LO for 𝑓𝑉 , 𝑚𝑉 can be
found in [21].

In the ratio 𝑚 drops out and the massless limit takes the running coupling to the fixed point
𝑎(𝑚) → 𝑎∗ which can be expanded in 𝜀 = 16.5 − 𝑁 𝑓 and is known to 5-loops [40–45],

𝑎∗ = 𝜀 (𝑒0 + 𝑒1 𝜀 + 𝑒2 𝜀
2 + 𝑒3 𝜀

3 + . . .) , (2)

1One could choose any scale 𝜇 > 𝑚
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Figure 1: Left: the 𝑓𝑉 /𝑚𝑉 ratio in increasing perturbative order. The non-perturbative result from combined
lattice calculations [22–24] and the KSRF-relation is also shown. The smaller error band corresponds to
the uncertainty of the lattice calculation, the wider one combines this with a conservative estimate of the
uncertainty of the KSRF-relation itself. Right: The corresponding results for 𝑓𝑃𝑆/𝑚𝑉 .

with some coefficients 𝑒𝑖 . Combining this expansion with (1) leads to the final results,

𝑓𝑉

𝑚𝑉

= 𝜀3/2𝐶0

(
1 +

3∑︁
𝑛=1

𝑛∑︁
𝑘=0

𝐶𝑛𝑘 𝜀
𝑛 log𝑘 𝜀 +𝑂 (𝜀4)

)
(3)

𝐶0 = 0.005826678
𝐶10 = 0.4487893 𝐶11 = −0.2056075
𝐶20 = 0.2444502 𝐶21 = −0.1624891 𝐶22 = 0.03522870
𝐶30 = 0.10604(3) 𝐶31 = −0.1128420 𝐶32 = 0.03695458 𝐶33 = −0.005633665

for the vector case and

𝑓𝑃𝑆

𝑚𝑉

= 𝜀3/2𝐶0

(
1 +

2∑︁
𝑛=1

𝑛∑︁
𝑘=0

𝐷𝑛𝑘 𝜀
𝑛 log𝑘 𝜀 +𝑂 (𝜀3)

)
(4)

𝐷10 = 0.4654041 𝐷11 = −0.2056075
𝐷20 = 0.2845697 𝐷21 = −0.1737620 𝐷22 = 0.03528692

for the pseudo-scalar case.
Note that the coefficients in (3) and (4) are well-behaved as the order grows, in contrast to

the generally factorially growing perturbative coefficients such as (1) and (2). Furthermore, since
𝑓𝑃𝑆,𝑉 /𝑚𝑉 are finite, RG-invariant, scheme independent physical quantities, all coefficients in (3)
and (4) are scheme independent as well2. These coefficients are the main results of our work.

3. Matching low 𝑁 𝑓 and high 𝑁 𝑓

The increasing orders for the two ratios are shown in figure 1. Clearly, the deviation between
the NNLO and N3LO results of 𝑓𝑉 /𝑚𝑉 for 𝑁 𝑓 ≥ 12 is not substantial. Quantitatively, in the range

2The coefficient 𝐶30 is only available in numerical form with some uncertainty at the moment.
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Figure 2: Non-perturbative lattice results in the range 2 ≤ 𝑁 𝑓 ≤ 10 and the perturbative ones where they
seem reliable. Assuming a monotonous behavior only a small range needs to be interpolated. Left: 𝑓𝑉 /𝑚𝑉 ,
the wider error bands for 2 ≤ 𝑁 𝑓 ≤ 10 includes the error from the usage of the KSRF relation. The error of
the perturbative curve is estimated from the difference of the last two available orders. Right: 𝑓𝑃𝑆/𝑚𝑉 , the
error of the perturbative result is estimated from that of 𝑓𝑉 /𝑚𝑉 .

11.9 ≤ 𝑁 𝑓 ≤ 12.1, the deviation between the NNLO and N3LO results is at most 4%, or in the
range 11.5 ≤ 𝑁 𝑓 ≤ 12.5 at most 13%. We thus conclude that in the region of interest, 𝑁 𝑓 ∼ 12,
the N3LO result is robust and reliable. We take as an estimate of the neglected higher orders the
difference between the last two available orders.

In order to compare with the lattice results we would need 𝑓𝑉 , however only 𝑓𝑃𝑆 was measured
directly [22–24]. Here we use the KSRF relation 𝑓𝑉 =

√
2 𝑓𝑃𝑆 originating in vector meson univer-

sality to estimate 𝑓𝑉 and assign a 12% uncertainty which holds in QCD. Somewhat unexpectedly
the perturbative result at 𝑁 𝑓 = 12 matches the last non-perturbative lattice result almost exactly;
see left panel of figure 2.

A similar analysis unfortunately cannot be completed for 𝑓𝑃𝑆/𝑚𝑉 because 𝑓𝑃𝑆 is only available
to NNLO order. One may nonetheless assume that the theoretical uncertainty is similar to that of
𝑓𝑉 making a comparison with the lattice results at low 𝑁 𝑓 feasible; see right panel of 2.

In both cases a match between the low 𝑁 𝑓 and high 𝑁 𝑓 regions seems plausible. Assuming
a monotonous behavior and trusting the lattice results below 𝑁 𝑓 = 10 and the perturbative ones
above 𝑁 𝑓 = 12 or 13 leaves only a narrow range to be interpolated or more rigorously calculated
in future lattice work. The following picture seems to emerge: a mostly 𝑁 𝑓 -independent flat curve
drops sharply at around 𝑁 𝑓 = 12 and 𝑁 𝑓 = 13 for the two ratios, respectively. This sudden change
in behavior might be indicative of 𝑁∗

𝑓
, the lower end of the conformal window.

4. Conclusion and outlook

In this contribution we presented a new approach to shed light on the emergence of conformal
behavior from chirally broken dynamics as the flavor number increases which combines both per-
turbative and non-perturbative information. Well chosen dimensionless quantities were presented
which can be easily measured in lattice calculations in the chiral limit and which can also be com-
puted in perturbation theory, again in the massless limit. Current lattice calculations are able to
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provide unambiguous results for low 𝑁 𝑓 and the perturbative results are reliable at high 𝑁 𝑓 ≤ 16.5.
Curiously, the two approaches seem to match at around 𝑁 𝑓 = 12, 13 where a sudden change in
behavior as a function of 𝑁 𝑓 is observed.

The results can be improved in a number of ways. First, direct lattice results at 𝑁 𝑓 = 12 would
be very useful. The difficulty is controlling all 3 sources of systematic effects, finite volume, finite
lattice spacing and finite mass which certainly would lead to very costly calculations. Second, the
dominant source of uncertainty of 𝑓𝑉 /𝑚𝑉 was the use of the KSRF relation, which in principle
could be eliminated once 𝑓𝑉 is measured directly on the lattice. Third, currently the highest
(p)NRQCD order for 𝑓𝑃𝑆 is NNLO which in principle could be extended to N3LO, similarly to 𝑓𝑉 .
However going beyond N3LO order for any quantity does not seem feasible in the near future since
the 6-loop 𝛽-function would be needed for that.
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