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In this work we perform calculations in order to determine the renormalization factors and the
mixing coefficients of the Yukawa and the quartic couplings in N = 1 Supersymmetric QCD. The
Yukawa couplings describe the interactions between gluino, quark and squark fields whereas the
quartic couplings describe four-squark interactions. We discretize the action on a Euclidean lattice
using the Wilson formulation for the gluino, quark and gluon fields; for squark fields (scalar fields)
we employ naïve discretization. At the quantum level Yukawa and quartic interactions suffer from
mixing with other operators which have the same transformation properties. Exploiting parity and
charge conjugation symmetries of the Supersymmetric QCD action, we reduce the allowed mixing
patterns. We compute, perturbatively to one-loop and to the lowest order in the lattice spacing, the
relevant three-point Green’s functions so as to fine tune the Yukawa couplings and the relevant
four-point Green’s functions to fine tune the quartic couplings. We use both dimensional and
lattice regularizations as required for implementing the Modified Minimal Subtraction scheme
(MS).
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1. Introduction

Over the last decades, supersymmetry (SUSY) has been considered a prime candidate for re-
solving various open questions related to the Standard Model (SM), including the nature of dark
matter and the unification of electromagnetic, weak, and strong forces proposed by the Grand Uni-
fied Theory (GUT). Supersymmetric theories of strongly interacting particles are actively explored
to address these questions, with substantial efforts dedicated to examining the SUSY phase tran-
sitions and the SUSY breaking mechanism through numerical lattice simulations. Recently, there
has been a growing focus on exploring supersymmetric QCD (SQCD) in this context. However,
notable challenges arise due to the necessity of fine-tuning the bare parameters of the Lagrangian
of the theory.

This work is a sequel to earlier investigations on SQCD and completes the one-loop fine-tuning
of the SQCD action on the lattice, paving the way for numerical simulations of SQCD. More specif-
ically, in Refs. [1] and [2], the first lattice perturbative computations in the context of SQCD were
presented; apart from the Yukawa and quartic couplings [3], the renormalization of all parameters
and fields appearing in the supersymmetric Lagrangian using Wilson gluons and fermions were ex-
tracted. Furthermore, the mixing of some composite operators under renormalization was explored.
The results in these references will be employed in our current research.

In this study, we focus on lattice renormalization of the Yukawa and quartic couplings. Our
approach involves employing the Wilson gauge action for gluon fields, the Wilson fermion action
for fermions (quark and gluino fields), and a naïve discretization for squark fields. After introducing
the basics of our computational setup (Section 2), we delve into a discussion of Yukawa coupling
renormalization (Section 3), both within dimensional and lattice regularization frameworks. We
adopt the MS renormalization scheme and we determine the renormalization factors up to one-
loop order. Similarly, we also provide preliminary results regarding the renormalization of quartic
couplings (Section 4). To conclude, we end with a brief summary of our work and outline our
future research plans (Section 5).

2. Formulation and Computational Setup

In this work we use the SQCD action in the Wess-Zumino (WZ) gauge [1, 2, 4, 5, 6, 7].
In our calculations, we use standard discretization; quarks (ψ), squarks (A±) and gluinos (λ ) are
defined on the lattice points whereas gluons (uµ ) are defined on the links between adjacent points:
Uµ(x) = exp[igaT αuα

µ (x+ aµ̂/2)]; α is a color index in the adjoint representation of the gauge
group. Below, we present the Euclidean action S L

SQCD on the lattice and in the massless limit using
Wilson fermions:

S L
SQCD = a4

∑
x

[Nc

g2 ∑
µ,ν

(
1− 1

Nc
TrUµ ν

)
+∑

µ

Tr
(
λ̄ γµDµ λ

)
−a

r
2

Tr
(
λ̄D2

λ
)

+ ∑
µ

(
Dµ A†

+Dµ A++Dµ A−Dµ A†
−+ ψ̄γµDµ ψ

)
−a

r
2

ψ̄D2
ψ

+ i
√

2gY
(
A†
+λ̄

α T α P+ψ − ψ̄P−λ
α T α A++A−λ̄

α T α P−ψ − ψ̄P+λ
α T α A†

−
)

+
1
2

g2
4(A

†
+T α A+−A−T α A†

−)
2 −m(ψ̄ψ −mA†

+A+−mA−A†
−)
]
, (2.1)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
0
8
8

Yukawa and Quartic Couplings in Supersymmetric QCD H. Herodotou

where: P± = (1± γ5)/2, Uµν(x) =Uµ(x)Uν(x+aµ̂)U†
µ(x+aν̂)U†

ν (x), a is the lattice spacing, T α

are the SU(Nc) generators in the fundamental representation, m is the mass of the matter fields
(which may be flavor-dependent), D is the standard covariant derivative in the fundamental/adjoint
representation [1], r is the Wilson parameter, Nc is the number of colors, and a summation over
flavors is understood in the last three lines of Eq. (2.1). Note that in the limit a→ 0 the lattice action
reproduces the continuum one. To restore SUSY in the classical continuum limit, it is necessary
for the values of gY and g4 at the tree level to coincide with the value of the gauge coupling, g.

Parity (P) and charge conjugation (C ) are symmetries of the continuum theory that is pre-
served exactly in the lattice formulation. The transformations of the fields under these symmetries
are shown in Ref. [3]. Further symmetries of the classical action are: R [U(1)R rotation of the
quark and gluino fields] and χ [U(1)A axial rotation of the squark doublets (A+, A−) and the quark
fields]. The R and χ symmetries are broken on the lattice due to the Wilson terms.

3. Renormalization of the Yukawa Couplings

To investigate the renormalization of the Yukawa couplings, we examine how dimension-4
operators, which are gauge-invariant, flavor singlets and contain a gluino, a quark, and a squark
field, transform under the symmetries P and C . Studying these operators, we conclude that there
are two linear combinations of Yukawa-type operators which are invariant under P and C [8]:

Y1 ≡ A†
+λ̄P+ψ − ψ̄P−λA++A−λ̄P−ψ − ψ̄P+λA†

− (3.1)

Y2 ≡ A†
+λ̄P−ψ − ψ̄P+λA++A−λ̄P+ψ − ψ̄P−λA†

− . (3.2)

Thus, all terms within each of the combinations in Eqs. (3.1) and (3.2) are multiplied by the same
Yukawa coupling, gY1 and gY2 , respectively. Note that the first combination corresponds to the third
line in the Eq. (2.1). However, at the quantum level, the second (mirror) combination, may also
emerge, with a Yukawa coupling, gY2 , that differs from the first one, gY1 . In the classical continuum
limit, gY1 equals to g, whereas gY2 vanishes.

In a theory that includes massive quarks, R symmetry is no longer preserved. However, in the
absence of anomalies, the χ ×R symmetry ensures that each component of the Yukawa term (as
described in Eq. (3.1)) remains unchanged. On the other hand, it changes the components of the
"mirror" Yukawa term (Eq. (3.2)) by introducing phase factors e2iθ and e−2iθ .

In order to obtain the renormalization and mixing factors of the Yukuwa couplings, we com-
pute, perturbatively, the relevant 3-point (3-pt) amputated Green’s functions with external gluino-
quark-squark fields using both dimensional regularization (DR) in D = 4 − 2ε dimensions and
lattice regularization (LR). The three one-loop Feynman diagrams that enter the computation of
these Green’s functions appear in Fig. 1.

Standard definitions of the renormalization factors of the fields and the gauge coupling con-
stant Zg can be found, e.g., in Ref. [1]. The Yukawa coupling is renormalized (at a reference scale
µ) as follows:

gY1 ≡ gB
Y1
= Z−1

Y1
Z−1

g µ
εgR, (3.3)

where at the lowest perturbative order ZgZY1 = 1, and the renormalized Yukawa coupling gR
Y1

coin-
cides with the gauge coupling gR. We also define the renormalization factor for the squark fields as

3
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Figure 1: One-loop Feynman diagrams leading to the fine-tuning of gY1 and gY2 . A wavy (solid) line
represents gluons (quarks). A dotted (dashed) line corresponds to squarks (gluinos). In the above diagrams
the directions of the arrows on the external line depend on the particular Green’s function under study. An
arrow entering (exiting) a vertex denotes a λ ,ψ,A+,A

†
− (λ̄ , ψ̄,A†

+,A−) field. Squark lines could be further
marked with a +(−) sign, to denote an A+ (A−) field.

follows: (
AR
+

AR†
−

)
=
(

Z1/2
A

)( AB
+

AB†
−

)
, (3.4)

where ZA is a renormalization 2× 2 mixing matrix. Within DR regularization and MS renormal-
ization this mixing matrix is diagonal [1]. However, in a lattice regularization, the matrix is non-
diagonal, and thus we have mixing between the components A+ and A†

−.
We impose renormalization conditions which result in the cancellation of divergences in the

corresponding bare 3-pt amputated Green’s functions. Using the λ − ψ̄ −A+ Green’s function in
DR, as an example, the renormalization condition can be expressed as follows:

⟨λ (q1)ψ̄(q2)A+(q3)⟩
∣∣∣MS

≡ Z−1/2
ψ Z−1/2

λ
(Z−1/2

A )++⟨λ (q1)ψ̄(q2)A+(q3)⟩
∣∣∣bare

. (3.5)

Coupling constants appearing in the right-hand side of Eq. (3.5) must be expressed in terms of their
renormalized values; doing so will involve use of Eq. (3.3), and thus will lead to a determination
of ZY . The left-hand side of Eq. (3.5) is just the MS (free of pole parts) renormalized Green’s
function. The other renormalization conditions which involve squark fields A†

+, A−, A†
− are variants

of Eq. (3.5).
The calculations in this work could ideally be carried out using arbitrary external momenta.

However, for convenience of computation, after confirming that there are no infrared (IR) diver-
gences, we proceed with the computation of the relevant diagrams by setting one of the external
momenta to zero. Using the values of the renormalization factors of the fields and of the gauge
coupling in DR [1], all variants of Eq. (3.5) lead to an identical value for ZDR,MS

Y :

ZDR,MS
Y = 1+O(g4). (3.6)

Therefore, we conclude that, at the quantum-level, the renormalization of the Yukawa coupling in
DR is not affected by one-loop corrections. We also expect that the corresponding renormalization
on the lattice will be finite.

As previously stated, on the lattice, the renormalization matrix ZA is non-diagonal; mixing
between the squark components appears on the lattice through the finite nondiagonal elements of
ZA. In addition, as a result of utilizing Wilson discretization, the χ×R symmetry is broken, causing
lattice bare Green’s functions not to be invariant under χ×R at the quantum level. Therefore, in the
calculation of the lattice bare Green’s functions, one-loop spurious contributions will arise, which
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will need to be removed by introducing the mirror Yukawa counterterm in the action. Taking as an
example the Green’s function with squark A+, the renormalization condition on the lattice reads:

⟨λ (q1)ψ̄(q2)A+(q3)⟩
∣∣∣MS

≡ Z−1/2
ψ Z−1/2

λ
⟨λ (q1)ψ̄(q2)

(
(Z−1/2

A )++A+(q3)+(Z−1/2
A )+−A†

−(q3)
)
⟩
∣∣∣bare

. (3.7)

The bare couplings on the right-hand side of this equation must be expressed in terms of the
corresponding renormalized ones by using Zg and ZY1 ; a mirror Yukawa term also contributes, with
a coupling constant gY2 which will be determined in what follows. Eq. (3.7) consists of two types
of contributions with opposite chiralities. Consequently, two separate conditions will be used to
determine the two unknowns ZY1 and gY2 .

From Eq. (3.7) at first perturbative order, O(g2) , the difference between the one-loop MS-
renormalized Green’s functions and the corresponding lattice bare Green’s functions allows us to
deduce ZY1 and gY2 . By combining this difference and the renormalization factors of fields and
gauge coupling on the lattice, we obtain the renormalization factors:

ZY1
LR,MS = 1+

g2

16π2

(
1.45833

Nc
+(4.40768−2chv)Nc +0.520616N f

)
(3.8)

gY2
LR,MS =

g3

16π2

(
−0.040580

Nc
+(2.45134−2chv)Nc

)
, (3.9)

where chv = 0(1) for the naïve (’t Hooft-Veltman (HV)) prescription of γ5; while the choice of
chv cannot affect pole parts, it is present in finite contributions, as seen above. As expected from
general renormalization theorems, the MS renormalization factors for gauge invariant objects are
gauge-independent, as in this case. Furthermore, the multiplicative renormalization ZY1 and the
coefficient gY2 of the mirror Yukawa counterterm are finite as we can predict from the continuum
calculation.

4. Renormalization of the Quartic Couplings

In order to determine the renormalization factors of the quartic couplings (four-squark inter-
actions), we have to calculate Green’s functions with four squark fields; two of them have to lie
in the fundamental representation and the other two in the antifundamental. There are ten cases
for choosing these squarks. We have to construct combinations that remain unchanged under the
symmetries of C and P . Table 1 displays all of these combinations [9]. The tree-level values of
the quartic couplings, λi, shown in Table 1, are:

λ1 = g2, λ2 = λ3 = λ4 = λ5 = 0 . (4.1)

These couplings receive quantum corrections, coming from the Feynman diagrams of Fig. 2. The
first eight Feynman diagrams (along with various mirror versions) are 1PI, the rest of them are
not. These one-loop diagrams enter the computation of the 4-point amputated Green’s functions
for the quartic couplings. We compute, perturbatively, the relevant Green’s functions using both
dimensional and lattice regularization. The Majorana nature of gluinos shows up in diagrams 7 and
10, in which λ −λ as well as λ̄ − λ̄ propagators appear.
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Operators C P

λ1(A
†
+ T α A++A− T α A†

−)
2/2 + +

λ2[(A
†
+A†

−)
2 +(A−A+)

2] + +

λ3(A
†
+A+)(A−A†

−) + +

λ4(A
†
+A†

−)(A−A+) + +

λ5(A
†
+A†

−+A−A+)(A
†
+A++A−A†

−) + +

Table 1: Dimension-4 operators which are gauge invariant and flavor singlets. All operators appearing in
this table are eigenstates of charge conjugation, C , and parity, P , with eigenvalue 1. In the above operators,
squark fields carry flavor indices. The symbols λi are five quartic couplings.

Figure 2: One-loop Feynman diagrams leading to the fine-tuning of λi. Notation is identical to that of Fig. 1.
A double-dotted line stands for ghost fields.

There are also additional one-loop Feynman diagrams leading to the fine-tuning of the quartic
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couplings on the lattice.
The computation of all 4-pt diagrams is currently in progress. Our results are presented in two

papers: one concerns the Yukawa couplings (gluino-quark-squark interactions) [10], and the other,
forthcoming, focuses on the quartic couplings (4-squark interactions) in SQCD [11].

5. Summary – Future Plans

In this research project, we investigate the renormalization factors of the Yukawa and quartic
couplings in the framework of N = 1 Supersymmetric QCD. In order to determine these factors,
we compute, perturbatively, 3-pt and 4-pt Green’s functions using both dimensional and lattice
regularizations. We conclude that the renormalization factor of the Yukawa coupling and the coef-
ficient of the mirror Yukawa counterterm are finite on the lattice. In our ongoing investigation we
are calculating perturbatively the relevant four-point Green’s functions so as to deduce the renor-
malization of the quartic couplings. Applying these results to the bare couplings in Monte Carlo
simulations of SQCD would be a first step in the non-perturbative fine-tuning of the lattice action.
An extension of our work would be the perturbative investigation of Supersymmetric non-abelian
models on the lattice through the use of chirally invariant actions.
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