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1. Introduction

The SU(Nc) gauge theories with Nf flavors of Dirac fermions constitute a varied family of
theories, including many members that markedly differ from QCD. For a given Nc, there exists a
critical number of fermions Nf c at which the gauge theorymakes a transition from a confining phase,
to another phase characterized by conformal behavior in the infrared. Distinguishing between these
behaviors requires non-perturbative calculations with strong gauge coupling.

Non-perturbative lattice studies of the SU(3) gauge theory with Nf = 8 have suggested that it is
close to the transition point for conformal behavior [1–12], so that Nf c is close to 8. Lattice studies
also indicate the presence of an unexpectedly light scalar state in the spectrum 1. The lightness
of the scalar could be explained if it were an approximate dilaton, the Goldstone boson that arises
when scale invariance is spontaneously broken. Potentially, we might expect gauge theories close to
the conformal transition point to possess an approximate scale invariance (above their confinement
scales), which would be needed to furnish a dilaton.

In these proceedings, we extend the study of Ref. [12], where we analyze recent lattice data
for the Nf = 8 theory using a dilaton Effective Field Theory (dEFT). In particular, we comment
on issues regarding the form of a potential appearing in the dEFT Lagrangian and its connection
to features of the underlying Nf = 8 gauge theory. Dilaton EFT descriptions of confining gauge
theories close to the conformal transition have been developed in Refs. [15–24] and earlier lattice
datasets of the SU(3), Nf = 8 theory have been fitted well by dEFT [25–28]. By using dEFT, we
assume that Nf = 8 is confining rather than conformal in the infrared. An alternative analysis of
the same lattice dataset that assumes conformal behavior was presented in [12].

Dilaton EFTs have been used in many contexts besides the analysis of lattice data. See Ref. [29]
for an early introduction. Indeed, the Higgs boson itself can be thought of as an approximate dilaton.
Fundamentally, the Higgs boson may be a dilaton that originates from a new strongly coupled
conformal sector. See, for example Ref. [30]. Alternatively, it may form within the strong sector as
an admixture between the dilaton and another Goldstone boson and be described using dEFT [31].

In the following two subsections, we briefly review our formulation of dEFT and the set of lattice
data which we will be fitting using our EFT. In Section. 2, we describe our fits to data, presenting
new results for the favored range of a particular parameter that enters the dilaton potential. Finally
in Section. 3, we explain our derivation of the dilaton potential and justify its form.

1.1 Dilaton EFT

Within dEFT, the dilaton field χ acquires a nonzero vacuum expectation value (VEV) 〈χ〉 = Fd,
spontaneously breaking scale invariance. The EFT also contains a multiplet of pNGBs arising as
pseudo Goldstone bosons of the approximate chiral symmetry SU(Nf )L × SU(Nf )R, which gets
spontaneously broken to its subgroup SU(Nf ). Under chiral symmetry, the pNGB multiplet Σ
transforms as a bifundamental Σ → LΣR† for L, R ∈ SU(Nf )L, R. The spontaneous breaking of
chiral symmetry is achieved by giving the pNGB field the VEV 〈Σ〉 = 1, with fluctuations satisfying
the constraint Σ†Σ = 1.

1Lighter than the ρ resonance and lighter than its analog in Nf = 2 QCD when lattice data taken using comparable
fermion masses are considered [13, 14].
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The dEFT Lagrangian is reviewed in Ref. [23]. At leading order in derivatives and explicit
symmetry breaking interactions, it is given by

L =
1
2
∂µ χ∂

µ χ +
f 2
π

4

(
χ

fd

)2
Tr

[
∂µΣ(∂

µ
Σ)†

]
+

m2
π f 2
π

4

(
χ

fd

)y
Tr

[
Σ + Σ†

]
− V(χ) . (1)

The first two terms in the Lagrangian preserve scale and chiral symmetries exactly, serving as
kinetic terms with two derivatives. The third term breaks scale and chiral symmetries explicitly
and provides mass for the pNGBs. The origin of this breaking is the fermion mass m in the
underlying gauge theory, so we identify m2

π = 2Bπm. The parameter y should be identified with
the scaling dimension of the fermion bilinear in the underlying gauge theory [32]. At the bottom of
the conformal window, it has been argued that y ∼ 2 - see Ref. [33] and references therein.

We include a potential for the dilaton, of the form

V∆(χ) =
m2

d
χ4

4(4 − ∆) f 2
d

[
1 −

4
∆

(
χ

fd

)∆−4
]
. (2)

Potentials of this type have been discussed in Refs. [30, 34, 35]. The potential includes a scale
invariant term ∝ χ4, and a term which breaks scale invariance ∝ χ∆. The latter descends from
interactions in the underlying gauge theory that explicitly break scale but not chiral invariance and
can be motivated using a spurion analysis [23].

In these proceedings, we take ∆ to be a free parameter to be determined from fits to lattice data.
In the limit ∆→ 4, the potential in Eq. (2) takes the logarithmic form

V4(χ) =
m2

d

16 f 2
d

χ4
[
4 log

(
χ

fd

)
− 1

]
. (3)

For this choice of potential, our dEFT coincides with that developed in Ref. [15].
By expanding fields around the classical vacuum, we can compute the leading-order physical

dilaton and pNGB masses, M2
d
and M2

π , as implicit functions of the symmetry-breaking quantity
m2
π = 2Bπm. Similarly, the leading-order pNGB decay constant Fπ can be computed using the axial

vector Noether current.
Additionally, we calculate a scalar decay constant FS , defined through the matrix element

〈0| JS(x) |χ(p)〉 ≡ FSM2
de−ip ·x , (4)

where the scalar current JS = m
∑N f

i=1 ψ̄iψi in the underlying gauge theory. In the EFT, the decay
constant FS is given by [12]

|FS | =
yNf M2

πFπ
2M2

d

fπ
fd
. (5)

This equation, which has also been derived using current algebra techniques [36], plays a crucial
role in our analysis.

Furthermore, in our study, we incorporate scattering parameters. In dEFT, the scattering length
a(2)0 for pNGBs in the s–wave, maximal isospin channel has been found to be [37]:

Mπa(2)0 = −
M2
π

16πF2
π

(
1 − (y − 2)2

f 2
π

f 2
d

M2
π

M2
d

)
. (6)
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The first term in this expression corresponds to the expression for scattering in chiral perturbation
theory in this channel [38], even in the absence of a dilaton. The second term, proportional to
M2
π/M

2
d
, represents the contribution from the dilaton, which is suppressed for y ∼ 2.

1.2 Lattice Data for the SU(3) Gauge Theory with Nf = 8 Flavors

In our analysis of the dilaton effective field theory (dEFT), we rely on lattice data obtained from
the comprehensive study presented in the recent Lattice Strong Dynamics collaboration paper [13].
This dataset encompasses four crucial quantities, namely the masses for the pseudoscalar Nambu-
Goldstone boson (aMπ) and the dilaton (aMd), along with the decay constants (aFπ and aFS). The
lattice spacing, denoted by a, serves as a convenient unit of measurement for dimensionful quantities
obtained through lattice calculations. The data has been extrapolated to the infinite volume limit
and is conveniently summarized in Table IX of [13], with additional details on lattice action and
ensembles available in the same source. The dataset includes measurements for these quantities
across five distinct values of the fermion mass expressed in lattice units (am).

Additionally, we incorporate lattice data for the s-wave scattering phase shift in the I = 2
isospin channel, obtained from Ref. [37]. The observable we utilize is Mπ/k cot δ, which, in
the low momentum limit (k � Mπ), coincides with the scattering length Mπa(2)0 . Although the
dataset in [37] is presented in terms of Mπ/k cot δ, we interpret these measurements as data for the
scattering length in our EFT fits. In total, we have data for 5 observables at 5 different values of the
fermion mass, yielding 25 data points total.

To compare EFT fits with varying numbers of model parameters, we employ the Akaike
Information Criterion (AIC) [39]. The AIC is defined as AIC = χ2

min + 2k, where χ2
min is the

minimum chi-squared value and k represents the number of model parameters. Our analysis reveals
that the statistical covariances between different observables are negligible, which simplifies the
calculation of the chi-squared function.

In a Bayesian framework, the relative probability of twomodels being correct can be determined
by comparing their AIC values [40]. Specifically, the probability ratio p1/p2 is given by the formula

p1/p2 = exp ((AIC2 − AIC1) /2) . (7)

This comparison provides valuable insights into the likelihood of different models being an accurate
representation of the underlying physics.

2. Fits to Lattice Data

We show the results of two global fits of leading-order dEFT to our lattice data in Table 1. We
first perform a fit using the form in Eq. (2) for the dilaton potential. The results of this six-parameter
fit are shown in the middle column. These results were reported in Ref. [12] and are consistent with
earlier determinations [25–27]. After minimizing the chi-squared function with respect to these
6 parameters, we obtain a chi-squared minimum per degree of freedom just over 1, indicating an
acceptable quality of fit.

For comparison, we perform a fit using the logarithmic potential shown in Eq. (3), which is
the form Eq. (2) takes in the ∆ → 4 limit, when our EFT coincides with that of [15]. Results for
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Parameter V∆ Fit V4 Fit

y 2.091(32) 2.087(32)

Bπ 2.45(13) 2.16(19)

f 2
π 6.1 (3.2) × 10−5 3.0 (2.2) × 10−6

f 2
π / f 2

d
0.1023(35) 0.1011(35)

m2
d
/ f 2

d
1.94(65) 0.499(54)

∆ 3.06(41) —

χ2/dof 21.3 / 19 26.7 / 20

AIC 33.3 36.7

Table 1: Central values and uncertainties for the leading-order V∆ (six-parameter) and V4 (five-parameter)
fits to the dEFT. Lattice data for Mπ , Md , Fπ , FS and the I = 2 scattering length has been incorporated
into this fit, for 5 different vales of the underlying fermion mass m, corresponding to 25 data points. All
dimensionful quantities are presented in units of the lattice spacing.

this five-parameter fit are shown in the last column of Table 1. Again, the chi-squared minimum
per degree of freedom lies just above 1, indicating a reasonable fit.

To make a more quantitative comparison between models, we use the AIC. By plugging values
from Table. 1 into Eq. (7), we find that the relative probability for the two models is p4/p∆ = 0.18,
which mildly disfavors the ∆→ 4 version of the EFT as a model describing this dataset.

To determine the favored range for ∆, we plot the chi-squared function for the six parameter fit
against ∆ (after having minimized the chi-squared with respect to the remaining 5 EFT parameters)
in Fig. 1. The three gray dashed lines correspond to the contours ∆χ2 = 1, 4, 9 and indicate the
extent of the 1, 2 and 3σ ranges for ∆. For example, the red curve crosses the ∆χ2 = 1 contour
at ∆ = 2.6 and 3.5 giving a 1σ range for ∆ between 2.6 and 3.5. The solid line crosses the red at
∆→ 4, showing that this limit sits between the 2 and 3σ ranges for ∆.

3. Interpretation of ∆

We begin this section by summarizing the derivation of the dilaton potential in Eq. (2),
clarifying the role of the parameter ∆ in our construction. We then go on to describe how ∆ relates
to quantities in the underlying gauge theory and explain why values of ∆ below 4 emerge naturally
given this UV completion, in contrast to the claim made in Ref. [20].

We derive the potential using a spurion analysis, following the logic outlined in Refs. [23, 26].
We start with a dEFT that is scale invariant. This dEFT then has a moduli space of degenerate
vacua in which scale invariance is spontaneously broken by the dilaton field acquiring a VEV. To
realistically describe nearly conformal lattice gauge theories at low energies, there needs to be some
(weak) explicit breaking of scale invariance built into the dEFT, to give the dilaton a mass. This
is implemented by introducing a spurion field S(x), which transforms under scale transformations

5
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Figure 1: The χ2 function plotted against ∆ after minimizing with respect to the remaining 5 fit parameters.

x → eρx with the rule

S(x) → e(4−∆)ρS(eρx) . (8)

At this point, ∆ appears inside the scaling dimension of the spurion field - its quantum number for
scale invariance.

The dilaton potential is then built out of scale invariant combinations of the spurion and dilaton
fields. In addition, we require that the potential is analytic in the spurion. It takes the form

V(χ) = χ4
∑
n=0

an

(
S

Λ2

(
χ

fd

)∆−4
)n

, (9)

where the an are dimensionless constants, Λ is the dEFT cutoff (given roughly by the confinement
scale of the gauge theory), and we have normalized S to give it dimensions of mass squared.

Scale invariance is then explicitly broken by demoting the spurion from a field that transforms
with rule (8), to a constant m2

d
that doesn’t transform. Provided that m2

d
� Λ2, we can truncate the

sum in Eq. (9). At leading order in the low energy expansion, the potential for the dilaton takes the
form shown in Eq. (2).

We stress that to derive the dilaton potential in dEFT, we have invoked only the low energy
degrees of freedom, the symmetries that act on them and the spurions that break these symmetries.
We have not made any direct use of information about the underlying theory above the confinement
scale (e.g the gauge group, fermion count or beta function for the gauge coupling).

In principle, further constraints on ∆ however come from the UV. Spurions must correspond to
couplings of symmetry breaking terms present in a generating functional renormalized at the scale
where the EFT is matched to the UV theory. Since we know that the UV theory is the SU(3) Nf = 8
gauge theory, we have schematically

exp{−Z[S]} =
∫
Dψ̄DψDGµ exp{−Sg.t[S]} =

∫
DΣD χ exp{−SdEFT[S]} , (10)
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where Sg.t is the action of the Nf = 8 gauge theory. The spurionS has been introduced into Sg.t[S] in
such a way so as to make the generating functional scale invariant, if S is given the transformation
law shown in Eq. (8). This dependence is analytic to ensure that correlation functions can be
extracted from the generating functional by taking functional derivatives with respect to S.

At the confinement scale where matching with the EFT happens, the gauge theory is strongly
coupled. Furthermore in a gauge theory near the conformal transition, the coupling is expected
to remain strong over an extended interval of scales above the confinement scale, with small beta
function. There is then the possibility that operator anomalous dimensions become large. This is
seen already in the lattice data, since y ≈ 2 can be identified with the ψ̄ψ scaling dimension, which
is very different from its engineering dimension.

If under scale transformations, the only change to the gauge theory generating functional were
to come from the running of the dimensionless gauge coupling g(µ) → g(µ+ δµ), then in effect the
theory is scale invariant with a nearmarginal deformation. However this cannot be assumed at strong
coupling, since the large anomalous dimensions that arise can result in new gauge theory operators
becoming relevant. These new relevant operators should then be included in the renormalized
action (that enters the generating functional), even though they were not present originally in the
bare action of the gauge theory.

The possibility that there may be new relevant operators appearing in the gauge theory just
below the conformal window has been widely considered in the literature [41, 42]. In particular, it
has been suggested that the transition between the infrared conformal and confining phases of gauge
theories may be caused by a four–fermi operator becoming relevant2. In which case, this would
be an example of a “marginality crossing transition” [43]. A lattice measurement of a four–fermi
operator anomalous dimension in a conformal gauge theory is presented in Ref. [44].

In the marginality crossing case, a new relevant operator should be included in Sg.t inside
Eq. (10). This new operator will come with a new coupling, that should be promoted to a spurion
to restore scale invariance, which we then identify with S. In this case, the EFT parameter ∆
ought to be identified with the scaling dimension of the new relevant operator at the confinement
scale, which in general will not be close to 4. In order to analyze the lattice data, while making
as few assumptions as possible about the nature of the conformal transition, we take ∆ to be a free
parameter, to be determined from fits to lattice data.
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